

48 Grenoble Drive Transportation Study Toronto, ON

Tenblock

48 Grenoble Drive Transportation Study Toronto, ON

Tenblock

R.J. Burnside & Associates Limited 1465 Pickering Parkway Suite 200 Pickering ON L1V 7G7 CANADA

March 2022 300054545.0000

48 Grenoble Drive Transportation Study March 2022

R.J. Burnside & Associates Limited

Report Prepared By:

Rebecca Rust

Transportation Student

Cindy Chung, EIT Transportation Planner

Report Reviewed By:

Dave Angelakis, C.E.T. Senior Project Manager - Transportation

RR:CC:DWA:cv

48 Grenoble Drive Transportation Study March 2022

Executive Summary

R.J. Burnside & Associates Limited (Burnside) was retained by Tenblock (the Client) to undertake a Transportation Study and Parking and Loading Review for two new apartment buildings that will replace an existing apartment building at 48 Grenoble Drive in the City of Toronto. Existing access is provided by two full movement driveways on Grenoble Drive and a full movement access on Deauville Lane. The driveway on Deauville Lane will be maintained.

The proposed development will include 993 residential units and a four-level underground garage with 471 parking spaces for residents and 51 parking spaces for visitors. There are also 894 long term bicycle spaces and 200 short term bicycle spaces proposed.

The Transportation Study and Parking and Loading Review is part of Zoning By-law Amendment and Site Plan applications.

The following is a summary of our key findings.

Traffic Operations

Under existing and future conditions, during both the weekday AM and PM peak hours, all study intersections are operating and will operate with excess capacity, with a level of service C or better and queue lengths within their respective storage lengths and link distances. No improvements will be required and / or will be triggered by the proposed development.

Site Plan Review

The site is well designed to accommodate all modes of travel. Access and circulation analyses utilizing AutoTurn confirms that the site can accommodate all expected design vehicles.

Transportation Demand Management

To further facilitate other modes of travel and reduce vehicle trips and parking demand, there are several TDM measures proposed as follows:

- Internal secured bicycle storage for residents.
- Outdoor bicycle racks strategically placed at ground level near the main entrance / lobby for visitors.
- Sidewalk connections from building entrances to the existing external sidewalk network along Deauville Lane and Grenoble Drive.

Tenblock iii

48 Grenoble Drive Transportation Study March 2022

 An information package will be provided to residents, which will include TTC and GO Transit maps and schedules, cycling and trail maps, and information on Smart Commute.

- Transit subsidy for residents via a preloaded PRESTO pass with \$25 for first time purchasers and renters.
- Real time transit information displays in building lobbies or encourage residents to download real time transit information via mobile applications.
- Encourage residents to join the Toronto Central Smart Commute Program.
- A bicycle repair station or stations located adjacent to bicycle storage room(s).
- Parking spaces will not be bundled with apartments.
- Recommending parking rate reductions for resident and visitor parking.

The combination of these proposed TDM measures and the addition of significant transit improvements in the area are expected to reduce vehicle trips by more than 30%.

Bicycle Parking Review

The proposed supply will exceed the current requirements of Zoning By-law 569-2013 (ZBL), based on the site falling within the Bicycle Zone 1), and will meet the City's future bicycle parking requirements in the *Draft Zoning By-law Amendment for Bicycle Standards*, dated November 25, 2021 (Draft Bicycle ZBA).

Vehicle Parking Review

City Council recently enacted By-law 89-2022 (ZBL 89-2022), which amended the ZBL and introduced no minimums for resident parking, reduced visitor parking requirements and lowered maximum parking supply limits. The proposed resident and visitor parking supply will comply with the new ZBL's parking requirements.

However, City staff requested that justification be provided for the resident parking supply. It is our opinion that the proposed resident parking supply of 471 spaces (0.47 space / unit) will adequately serve the parking needs of future residents for the following reasons:

- There are many TTC bus routes along Don Mills Road with bus stops located within 2-minute walk of the site. In addition, there will also be frequent, daily transit service provided via the ECLRT and future Ontario Line. The closest ECLRT station will be the Aga Khan and Museum Station, which will be approximately 690 m (or a 700 m / 10-minute walk / 3-minute bike ride) from the site. The closest Ontario Line station will be the Flemingdon Park Station which will be approximately 450 m (or a 480 m / 7-minute walk / 2-minute bike ride).
- The proposed Transportation Demand Management (TDM) measures summarized above will further reduce parking demand.

Tenblock iv

48 Grenoble Drive Transportation Study March 2022

 There have been several similar developments with similar access to transit that have been approved with reduced parking supply variances lower than the proposed parking supply rate.

In addition, the number of proposed accessible and loading spaces will meet the minimum requirements of the ZBL.

Table of Contents

1.0		luction	
		Background	
		Scope of Work	
		Intersection Analysis Methodology	
2.0		ing Conditions	
		Site Context	
		Existing Road Network	
		Existing Transit Services	
		2.3.1 Transit Pass Ownership	
		Existing Traffic Volumes	
3.0		e Background Conditions	
		Future Transit	
		Future Active TransportationFuture Road Network	
		Background Traffic Growth	
		Background Development	
		Background Traffic Volumes	
4.0		osed Development	
4.0		Trip Generation	
		Vehicle Trip Distribution & Assignment	
5.0		Traffic Conditions	
6.0	Traffi	c Operations	18
7.0		Plan Review	
8.0		portation Demand Management (TDM) Plan	
9.0		ng and Loading Supply Review	
		Bicycle Parking	
	9.2	Vehicle Parking	22
		9.2.1 Resident Vehicle Parking Supply	23
		9.2.2 Accessible Parking	25
	9.3	Loading	26
10.0	Conc	lusions	26
	10.1	Traffic Operations	26
		Site Plan Review	
		Transportation Demand Management (TDM) Plan	
		Parking Supply	
		10.4.1 Bicycle Parking	
		10.4.2 Vehicle Parking	28

48 Grenoble Drive Transportation Study March 2022

Tables

Table 1: Transit Route Summary	7
Table 2: TTS Ward 26 Transit Pass Ownership	
Table 3: Traffic Counts Summary	
Table 4: Background Development Summary	12
Table 5: Site Trip Generation	
Table 6: Vehicle Trip Distribution	16
Table 7: Existing and Future Traffic Operations – AM Peak Hour	18
Table 8: Existing and Future Traffic Operations – PM Peak Hour	19
Table 9: Proposed TDM Measure	20
Table 10: ZBL Bicycle Parking Requirements	21
Table 11: ZBL Vehicle Parking Requirements	22
Table 12: ZBL 89-2022 Maximum Vehicle Parking Requirements	23
Table 13: Secondary Plan Comparison	24
Table 14: Parking Rates Comparison	25
Table 15: ZBL 89-2022 Effective Parking Requirements	26
Figures	
Figure 1: Site Location	1
Figure 2: Don Mills Crossing Secondary Plan Study Area	
Figure 3: Existing Cycle Network and Main Pedestrian Destinations	
Figure 4: Existing Vehicle Traffic Control and Lane Layout	
Figure 5: Transit Route Map	
Figure 6: Projected 2022 Traffic Volumes	
Figure 7: Exhibit 9-3 from the Don Mills Crossing Study	
Figure 8: Exhibit 9-10 from the Don Mills Crossing Study	
Figure 9: 2028 Background Traffic Volumes	
Figure 10: Site Plan	
Figure 11: Site Generated Vehicle Traffic	
Figure 12: 2028 Total Traffic Volumes	17
Appendices	
•••	
Appendix A Intersection Analysis Methodology Appendix B Historical Counts and Signal Timing Plans	
Appendix C Background Development Traffic	
Appendix C Background Development Trainic Appendix D Don Mills Crossing Study Excerpts	
Appendix B Existing Traffic Operations	
Appendix E Existing Traine Operations Appendix F Background 2028 Traffic Operations	
Appendix G Total 2028 Traffic Operations	
Appendix G Total 2026 Traffic Operations Appendix H Swept Path Analysis	
Appendix IT Swept Fath Analysis Appendix I Draft Bicycle Zoning By-law Amendment	
Appendix I Zoning By-law 569-2013 Excerpts	

νi

Tenblock vii

48 Grenoble Drive Transportation Study March 2022

Appendix K Zoning By-law 89-2022 Excerpts

Abbreviations

The following summarizes abbreviations that are utilized within this report:

- AWSC All way stop controlled
- Burnside R.J. Burnside & Associates Limited
- City City of Toronto
- Directions:
 - EB Eastbound
 - SB Southbound
 - NB Northbound
 - WB Westbound
- ECLRT Eglinton Crosstown Light Rail Transit
- ITE Institute of Transportation Engineers
- LOS level of service
- LUC Land Use Code
- PHF Peak Hour Factor
- TOR Terms of Reference
- Traffic Movements:
 - LT shared left-through movement
 - LTR shared left-through-right movement
 - LR shared left-right movement
 - TR shared through-right movement
- v/c volume to capacity ratio

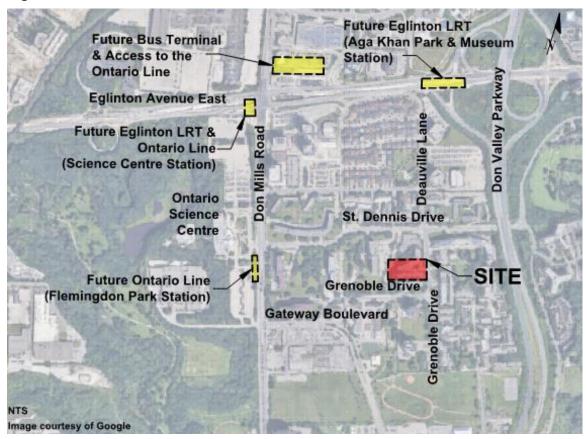
48 Grenoble Drive Transportation Study March 2022

Disclaimer

Other than by the addressee, copying or distribution of this document, in whole or in part, is not permitted without the express written consent of R.J. Burnside & Associates Limited.

In the preparation of the various instruments of service contained herein, R.J. Burnside & Associates Limited was required to use and rely upon various sources of information (including but not limited to: reports, data, drawings, observations) produced by parties other than R.J. Burnside & Associates Limited. For its part R.J. Burnside & Associates Limited has proceeded based on the belief that the third party/parties in question produced this documentation using accepted industry standards and best practices and that all information was therefore accurate, correct and free of errors at the time of consultation. As such, the comments, recommendations and materials presented in this instrument of service reflect our best judgment in light of the information available at the time of preparation. R.J. Burnside & Associates Limited, its employees, affiliates and subcontractors accept no liability for inaccuracies or errors in the instruments of service provided to the client, arising from deficiencies in the aforementioned third party materials and documents.

R.J. Burnside & Associates Limited makes no warranties, either express or implied, of merchantability and fitness of the documents and other instruments of service for any purpose other than that specified by the contract.


48 Grenoble Drive Transportation Study March 2022

1.0 Introduction

1.1 Background

Tenblock (the Client) is proposing two new apartment buildings with 993 units that will replace the existing apartment building at 48 Grenoble Drive in the City of Toronto. The site is currently occupied by a 9-storey residential building with 109 units. Existing access is provided by two full movement driveways on Grenoble Drive and one full movement driveway on Deauville Lane. The two driveways on Grenoble Drive will be removed. The site location is shown in Figure 1.

Figure 1: Site Location

Zoning By-law Amendment and Site Plan applications are required and R.J. Burnside & Associates Limited (Burnside) was retained to undertake a Transportation Study and Parking and Loading Review as part of the applications.

48 Grenoble Drive Transportation Study March 2022

1.2 Scope of Work

Parking / Loading Review

The following scope of work was sent to the City for review, but we did not receive comments before publication.

Analysis Scenarios Existing traffic conditions 2028 background and total traffic conditions **Analysis Time Periods** Weekday AM peak hour (7:00 AM to 9:00 AM) Weekday PM peak hour (4:00 PM to 6:00 PM) Analysis Intersections Deauville Lane / St. Dennis Drive (Study Area) Deauville Lane / Site Driveway Deauville Lane / Grenoble Drive / Gateway Boulevard Grenoble Drive / Gateway Boulevard / Flemingdon Park Shopping Centre Driveway **Transportation Demand** Recommendations on feasible TDM strategies to Management (TDM) Plan discourage single occupant motor vehicle use

The City's Traffic Impact Study (TIS) Guidelines, dated July 2013 and Guidelines for using Synchro 11, dated January 2021, were taken into consideration.

Vehicle, accessible, bicycle and loading spaces

1.3 Intersection Analysis Methodology

Signalized and stop controlled intersection operations were assessed for intersections in the study area using the software program Synchro 11, which employs methodology from the *Highway Capacity Manual* (HCM 2000, HCM 2010 and HCM 6), published by the Transportation Research Board National Research Council.

Synchro 11 can analyze both signalized and unsignalized intersections in a road corridor or network taking into account the spacing, interaction, queues and operations between intersections. The analysis utilizes the HCM 2000 methodology for all intersections, except for all-way stop controlled intersections where HCM 6th methodology is utilized (HCM 2000 methodology does not calculate queue lengths for all-way stop controlled intersections). The signalized and stop controlled intersection analysis methodology is provided in Appendix A.

48 Grenoble Drive Transportation Study March 2022

2.0 Existing Conditions

2.1 Site Context

The site is bounded by Grenoble Drive to the south, Deauville Lane to the east, and apartment buildings to the north and to the west. The existing site is occupied by a 9-storey rental apartment building with a total of 109 units.

Based on the *Don Mills Crossing – Mobility Planning Study* (Don Mills Crossing Study), prepared by Steer Davies Gleave, dated February 2019, the site is within the "transportation area of influence" of the Don Mills Secondary Plan area. The site lies outside of the "core study area" of the Don Mills Crossing Study, which has a radius of approximately 800 m from the Eglinton Avenue East / Don Mills Road intersection. The boundaries from this study are shown in Figure 2. The secondary plan was adopted by City council on April 17, 2019 as an initiative by the City to focus and shape anticipated growth around the intersection of Don Mills Road and Eglinton Avenue East due to the development of future transit infrastructure, including the currently under construction Eglinton Crosstown Light Rail Transit (the ECLRT).

MUNICIPAL SERVICING AREA OF INFLUENCE

COMMUNITY SERVICES AND FACILITIES AREA OF INFLUENCE

TRANSPORTATION AREA OF INFLUENCE

TRANSPORTATION AREA OF INFLUENCE

STEENING DRIVE

GRENORIE OF STITE

STEENING DRIVE

GRENORIE OF STITE

STEENING DRIVE

GRENORIE OF STITE

STI

Figure 2: Don Mills Crossing Secondary Plan Study Area

Source: Don Mills Crossing - Mobility Planning Study, prepared by Steer Davies Gleave, dated February 2019

48 Grenoble Drive Transportation Study March 2022

2.2 Existing Road Network

The existing road network is described below and illustrated in Figure 3, including active transportation infrastructure and key pedestrian destinations such as grocery stores, parks, and amenities. All roads are under the jurisdiction of the City. Sidewalks are provided on both sides of all roads.

Real Canadian Superstore Parkway Eglinton Avenue East Don Valley Ferrand **Drive Park** Don Ontario Legend St. Dennis Science Dennis R Timbrell Resource Drive Centre Community / nd Community Centre Recreation Centre Grenoble Park Drive TCHC Grenoble Gateway Playground Public School School **Boulevard** Grenoble Sunny Drive **Grocery Store** Foodmart Vendome Basketball Bike Lane Flemingdo Court Flemingdor Park Park Playground **Paradise** St. John XXIII NTS ngela James Catholic School Image courtesy of Google

Figure 3: Existing Cycle Network and Main Pedestrian Destinations

St. Dennis Drive

St. Dennis Drive is an east-west collector road between Don Mills Road and Linkwood Lane. East of the Don Valley Parkway, the roadway becomes a minor arterial. St. Dennis Drive provides access to Eglinton Avenue East, east of the Don Valley Parkway. The roadway has a 2-lane urban cross section, a posted speed limit of 40 km/h and bicycle lanes on both sides. Standing and stopping are prohibited on the south side of the road between Don Mills Road and Deauville Lane and on the north side of the road east of Deauville Lane.

48 Grenoble Drive Transportation Study March 2022

Deauville Lane / Grenoble Drive

Deauville Lane is a north-south collector road between St. Dennis Drive and Grenoble Drive. North of St. Dennis Drive, the roadway is classed as a local road. South of Grenoble Drive, Deauville Lane becomes Grenoble Drive and is also classed as a local road. The roadway has a 2-lane urban cross section, a posted speed limit of 40 km/h and bicycle lanes on both sides. Stopping is prohibited on both sides of the road.

Grenoble Drive

Grenoble Drive is an east-west collector road with a 2-lane urban cross section, a posted speed limit of 40 km/h and bicycle lanes on both sides. Stopping is prohibited on the north side of the road. East of the Grenoble Public School Driveway on Grenoble Drive, there is a mid-block Level 1 Type A pedestrian crossover.

Gateway Boulevard

Gateway Boulevard is a collector road between Don Mills Road and Grenoble Drive. East of Grenoble, the roadway is classed as a minor arterial. The roadway has a 2-lane urban cross section with a posted speed limit of 40 km/h and bicycle lanes on both sides. Stopping is prohibited on the south side of the road.

The existing vehicle traffic control and lane layout is illustrated in Figure 4.

48 Grenoble Drive Transportation Study March 2022

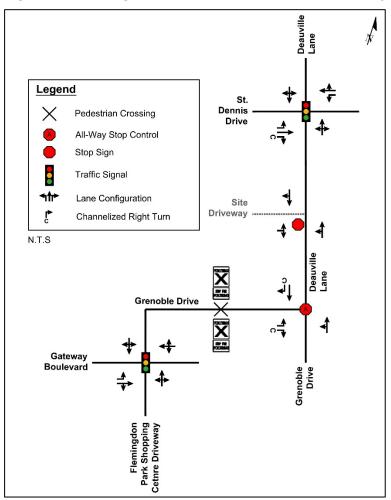


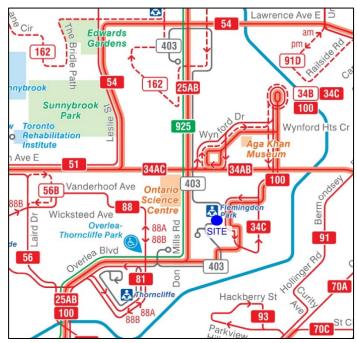
Figure 4: Existing Vehicle Traffic Control and Lane Layout

2.3 Existing Transit Services

The Toronto Transit Commission (TTC) provides frequent bus service within the vicinity of the site, 7 days a week. Bus stops are currently located on both sides of Deauville Lane, just north of the site driveway, within approximately 60 m to 150 m (less than a 2-minute walk), at St. Dennis Drive / Deauville Lane intersection, approximately 155 m (a 2-minute walk) north of the site and at Don Mills Road / Gateway Boulevard intersection, approximately 480 m (a 7-minute walk) west of the site.

Service frequency and hours of operation of bus routes that service the study area are summarized in Table 1 and illustrated in Figure 5. These schedules are current, and it is our understanding that the frequency and hours of service has been reduced due to the current COVID-19 pandemic.

48 Grenoble Drive Transportation Study March 2022


Table 1: Transit Route Summary

Route	Direction	Peak Period Headways ²	Days and Hours of Operation ³
25 (Don Mills)	Northbound & Southbound	AM: 6 mins PM: 5 mins	4:40 AM – 7:08 PM, Monday to Friday 4:40 AM – 1:49 AM, Saturday and Sunday
34C (Eglinton East to Flemingdon Park)	Northbound & Southbound	AM: 15 mins PM:10-15 mins	5:45 AM – 1:44 AM, Monday to Friday 6:29 AM – 1:45 AM, Saturday 7:47 AM – 1:43 AM, Sunday
100 (Flemingdon Park)	Northbound & Southbound	AM: 6 mins PM: 7 mins	5:06 AM – 1:17 AM, Monday to Friday 6:14 AM – 1:32 AM, Saturday 7:20 AM – 1:20 AM, Sunday
925 (Don Mills Express)	Northbound & Southbound	9 mins	5:58 AM – 10:03 PM, Monday to Friday 7:12 AM – 7:05 PM, Saturday 7:16 AM – 7:00 PM, Sunday
325 (Don Mills)	Northbound & Southbound	30 mins	1:24 AM – 4:24 AM, Overnight 7 days a week
403 (South Don Mills Community Bus)	Northbound & Southbound	75 mins	10:08 AM – 4:15 PM, Monday to Friday

Notes: 1. Source: TTC Service Summary, February 13, 2022 to March 26, 2022

- 2. AM Peak period refers to 6:00 to 9:00 AM and PM Peak period refers to 3:00 to 7:00 PM on weekdays.
- 3. Hours of operation are approximate and based on route schedules on the TTC website.

Figure 5: Transit Route Map

Source: TTC System Map, February 2022

48 Grenoble Drive Transportation Study March 2022

2.3.1 Transit Pass Ownership

Transit pass ownership trends for residents of the local ward (Transportation Tomorrow Survey Ward 26) was determined from 2011 and 2016 Transportation Tomorrow Survey (TTS) results published by the Data Management Group at the University of Toronto Transportation Research Institute. The "Possess a Transit Pass" attribute from TTS was utilized and is summarized in Table 2.

Table 2: TTS Ward 26 Transit Pass Ownership

Ownership	2011 TTS	2016 TTS
Possess a Transit Pass	20%	64%
Does Not Possess a Transit Pass	79%	35%
Unknown	1%	1%
Total	100%	100%

From 2011 to 2016, transit pass ownership tripled with 64% of residents owning a transit pass by 2016. It is expected that ownership has continued and will continue to increase due to better transit services and future transit improvements, as detailed in Section 3.1.

2.4 Existing Traffic Volumes

Current traffic volumes have been significantly lower than usual due to the COVID-19 pandemic. Therefore, historical traffic counts were used at all study intersections, where available, to better reflect typical existing conditions. The historical traffic counts at the study intersections identified in Section 1.2 were obtained from the City and Spectrum Traffic's database for the weekday morning AM peak period (7:00 AM to 9:00 AM) and afternoon PM peak period (4:00 PM to 6:00 PM). The weekday AM and PM peak hours were selected as these are typical peak traffic periods for this type of development. Table 3 summarized the counts used for all study intersections, along with their sources.

Table 3: Traffic Counts Summary

Intersection	Date of Count	Source
Deauville / St. Dennis	Wednesday, December 12, 2018	City
Deauville / Grenoble	Wednesday, December 5, 2018	City
Gateway / Grenoble / Flemingdon Park Shopping Centre driveway	Thursday, November 5, 2015	Spectrum

In addition, a review of historical traffic counts obtained from the City found that traffic volumes have been decreasing between 2001 to 2018. Therefore, no growth was applied to the traffic counts. The projected 2022 traffic volumes are illustrated in Figure 6. All historical counts are provided in Appendix B.

48 Grenoble Drive Transportation Study March 2022

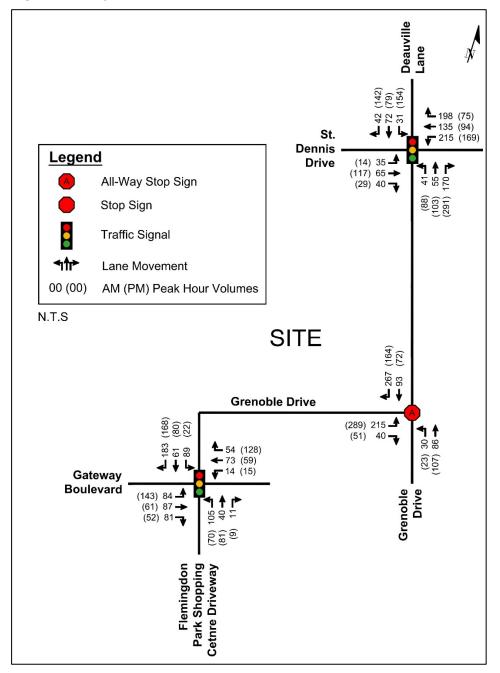


Figure 6: Projected 2022 Traffic Volumes

3.0 Future Background Conditions

Future background traffic consists of existing traffic, background traffic growth and traffic from other developments. Background traffic growth and traffic from other developments are discussed below. Future road network and transit improvements within the study horizon year are also discussed. The horizon year of 2028 was selected for future projections, assuming buildout by 2023.

48 Grenoble Drive Transportation Study March 2022

3.1 Future Transit

The Don Mills and Eglinton Area is identified as a Gateway Hub in Metrolinx's Mobility Hub guidelines and in their study, *The Big Move*, dated November 2008. This Gateway Hub will include two future rapid transit lines. One of these lines is the Eglinton Crosstown Light Rail Transit (ECLRT) line, which will extend between Weston Road and Kennedy Road, connecting the Mount Dennis community to the Kennedy GO and subway stations, with future headways of 3 minutes during the morning and afternoon weekday peak periods. The closest station to the site will be the Aga Khan Park and Museum Station, which is approximately 690 m (or a 700 m /10-minute walk / 3-minute bike ride) away from the site. Another station within close proximity to the site is the Science Centre Station to be located on the southwest corner of the Don Mills Road / Eglinton Avenue intersection, which will be an approximate 750 m (or a 1.0 km / 14-minute walk / 4-minute bike ride) from the site. In addition, a seven bay TTC bus terminal will be located on the northeast corner of this same intersection. All of these works are expected to be completed by September of 2022.

The second line that is planned within the study area is the Ontario subway line. This subway line will provide an alternative route to/from the Downtown core. Within the study area, this route will be located on the west side of Don Mills Road as an elevated line that will connect with the Science Centre Station on the ECLRT line, but the station will be located on the northeast corner of Don Mills Road / Eglinton Avenue intersection adjacent to the future bus terminal. The next closest station on the Ontario line will be the Flemingdon Park Station to the west of the site on Don Mills Road at the north leg of Gateway Boulevard. This will be approximately 450 m (or a 480 m / 7-minute walk / 2-minute bike ride) from the site. Proposed headways will be as low as 1.5 minutes during both peak periods. However, the expected completion year of this line is 2030, which is beyond the study horizon.

In addition, the TTC is continuing to look at ways to increase bus headways. All these future transit improvements will continue to increase the ease of use and attractiveness of transit, which will result in the continuing decrease in vehicle use and parking demand.

3.2 Future Active Transportation

Based on the Don Mills Crossing Study, there are several active transportation improvements proposed within the vicinity of the site. This includes bike lanes on both sides of Deauville Lane, north of St. Dennis Drive, Eglinton Avenue and Rochefort Drive and a multi-use trail along the west side of Don Mills Road. However, the timing of these improvements is unknown with the exception of the bike lanes on Eglinton Avenue. This latter improvement is scheduled to be installed with the completion of the ECLRT line. There will be good pedestrian and cyclist connectivity in vicinity of the area. An excerpt from the study is provided in Figure 7.

48 Grenoble Drive Transportation Study March 2022

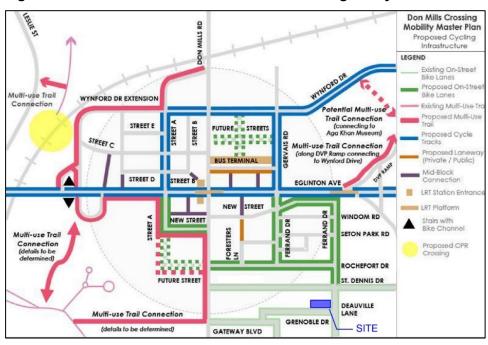


Figure 7: Exhibit 9-3 from the Don Mills Crossing Study

In addition, the Don Mills Crossing Study proposes a multi-modal mobility hub on the northwest corner of the Ferrand Drive / Rochefort Drive intersection, approximately 650 m (a 9-minute walk or a 2-minute cycle). The multi-modal mobility hub would potentially include bike share, car share, electric charging and ride share spaces. An excerpt from the study is provided in Figure 8.

Don Mills Crossing MILLS RD Mobility Master Plan Proposed Multi-Modal Mobility Hubs LEGEND Large Multi-moda Mobility Hub WYNFORD DR EXTENSION mall Multi-moda Mobility Hub STREET A STREET B STREET E FUTURE STREETS GERVAIS RD Transit Station STREET C BUS TERMINAL Transit Station / STREET D EGLINTON AVE WINDOM RD SETON PARK RD ROCHEFORT DR ST. DENNIS DR DEAUVILLE GRENOBLE DR SITE GATEWAY BLVD

Figure 8: Exhibit 9-10 from the Don Mills Crossing Study

48 Grenoble Drive Transportation Study March 2022

3.3 Future Road Network

Under background conditions, there are no planned road network improvements. However, within the vicinity of the site, the completion of the ECLRT line will result in geometric changes at the Eglinton Avenue / Don Mills Road intersection. The previously existing HOV lanes along Eglinton Avenue will be removed, but the HOV lanes on Don Mills Road will be retained. In addition, the Don Mills Crossing Study proposes a realignment of Ferrand Drive at Eglinton Avenue with Gervais Drive, resulting in a four-legged full movement signalized intersection. However, there is no timeline as to when this will occur. If this improvement occurs, it will provide a more direct access to Eglinton Avenue for residents.

3.4 Background Traffic Growth

As mentioned, a review of historical traffic counts obtained from the City found a negative traffic growth trend between the years 2000 to 2018. As a result, no growth was applied to the traffic counts.

3.5 Background Development

Background developments were identified within the proximity of the site based on the City's online development application website. The developments are summarized in Table 4. Trips generated from each development were included in background traffic projections. Excerpts of the site traffic figures from traffic studies for each development are provided in Appendix C.

Development Statistics Address Source AΜ PM **Proposed Use** Trips Trips 25 St. Dennis Drive Updated Urban 724 Apartments, 25 St. Dennis Transportation Considerations 625 m² Daycare, 139 111 Drive Report, by BA Group, dated and 600 m² Retail September 8, 2016 7-11 Rochefort Drive Transportation 7-11 Rochefort 1,322 Apartments

125

168

Table 4: Background Development Summary

3.6 Background Traffic Volumes

Drive

and 199 m² café

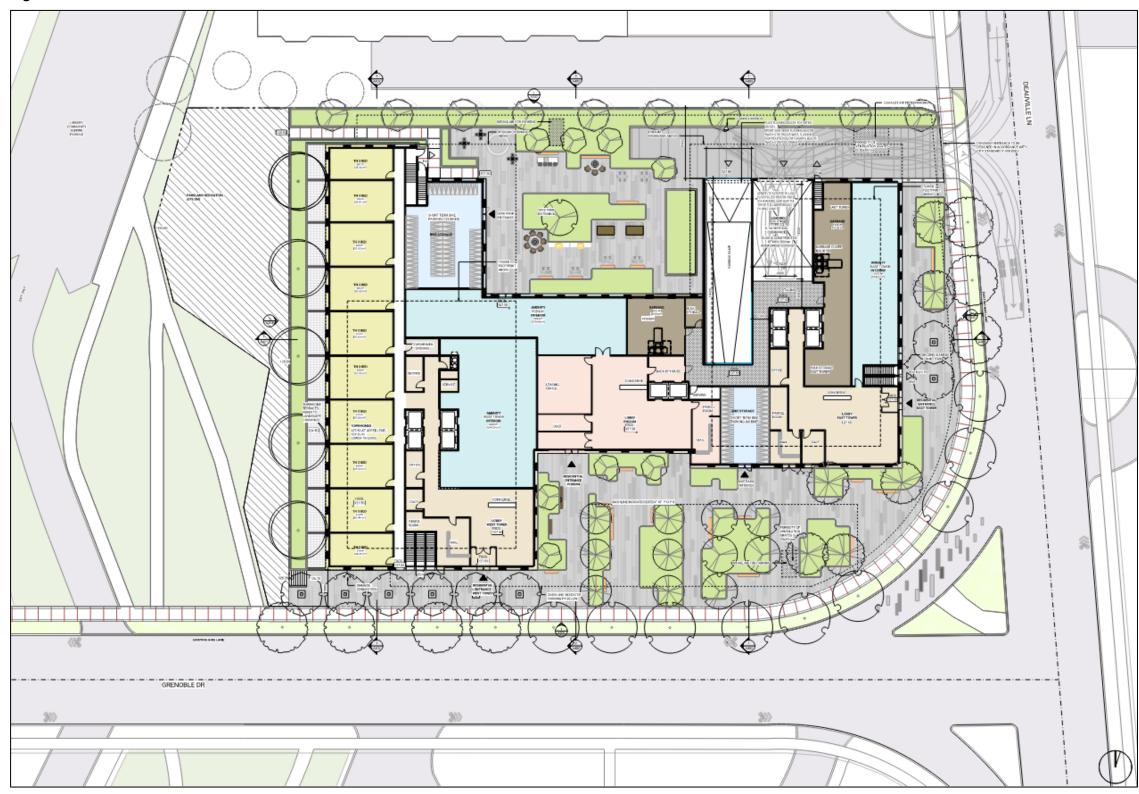
Background traffic volumes consist of the application of growth per annum (up to the horizon year of 2028) to the existing traffic volumes shown in Figure 6, along with traffic from background developments. The resulting background 2028 traffic volumes are illustrated in Figure 9.

Study, by Burnside, dated October

2021

13

Deauville Lane (157) (79) (154) 80 72 31 198 (75) **←** 140 (104) St. Legend 215 (169) Dennis (53) 55 All-Way Stop Sign Drive (122) 85 -> (29) 40 Stop Sign Traffic Signal ┪╬╸ Lane Movement 00 (00) AM (PM) Peak Hour Volumes N.T.S SITE 267 93 **Grenoble Drive** (173) (80) (22) (289) 215 (51) 40 🖜 **-** 54 (128) 61 ← 73 (59) 14 (15) Gateway **Boulevard** (158) 89 **♣** (61) 87 **→** (52) 81 **▼** 4 + (70) (81) (9) Park Shopping


Figure 9: 2028 Background Traffic Volumes

4.0 Proposed Development

According to the site plan by Diamond Schmitt Architects, dated March 2, 2022, the proposed development will include 993 apartments in two towers. Access will be provided by one full movement driveway on Deauville Lane. The site plan is shown in Figure 10.

48 Grenoble Drive Transportation Study March 2022

Figure 10: Site Plan

48 Grenoble Drive Transportation Study March 2022

4.1 Trip Generation

Trip generation for the proposed development was based upon the trip rates contained in the Don Mills Crossing Study utilizing the following trips per resident:

Weekday AM Peak Hour: 0.204 tripsWeekday PM Peak Hour: 0.152 trips

As these rates did not include an inbound and outbound split, these splits were determined based on information from the publication *Trip Generation Manual, 11th Edition,* published by the Institute of Transportation Engineers. Land use code (LUC) 222 (High-Rise Multifamily Housing) and a general urban / suburban environment was assumed.

In addition, to account for existing residential trips from the existing buildings, future projected trips were based on the unit number difference between the existing occupied units and the proposed units. This results in 884 net units (993 future units less 109 existing occupied units). These units were then converted to the number of residents based on information from the City's *Housing Occupancy Trends*, 1996 to 2016. For recently built apartment developments, on average there are 1.67 residents / household, which results in a total of 1,476 residents.

Based on the modal split in the Don Mills Crossing Study, auto driver, transit, pedestrian, and cyclist trips were determined. Auto drivers were converted into vehicular trips by assuming one occupant per vehicle for a more conservative analysis and this also is consistent with vehicular occupancy data from 2016 TTS for this local ward (Ward 26). The resulting site trip generation is summarized in Table 5. Excerpts of all relevant information are provided in Appendix D.

Table 5: Site Trip Generation

Trip Type		Weekd	ay AM Pea	k Hour	Weekday PM Peak Hour			
		In	Out	Total	In	Out	Total	
Person	Person Trips (1,476 Residents)		199	301	125	99	224	
	Auto – 41%	41	82	123	51	41	92	
Travel	Transit – 41%	41	82	123	51	41	92	
Mode	Cyclists – 4%	6	7	13	6	3	9	
Pedestrians – 14%		14	28	42	17	14	31	
	Vehicle Trips	41	82	123	51	41	92	

With the availability of existing transit and the future ECLRT and bus terminal, it is anticipated that the projected addition of 123 and 92 transit riders during the AM and PM peak hours, respectively, can be accommodated by the future transit system. With the availability of the existing and future sidewalk and bike network in the study area, the

48 Grenoble Drive Transportation Study March 2022

projected addition of 9 to 13 cyclists and 42 and 31 pedestrians during the AM and PM peak hours, respectively, can be adequately accommodated.

4.2 Vehicle Trip Distribution & Assignment

The trip distribution and assignment of new vehicle trips were based upon existing traffic patterns, the available road network, 2016 Transportation Tomorrow Survey data and findings from the Don Mill Crossing Study. The estimated distribution of site trips on the greater road network is shown in Table 6 and the vehicular trip assignment is illustrated in Figure 11.

Table 6: Vehicle Trip Distribution

To/From	Via	Distribution
North	Don Mills Road	25%
South	Don wills Road	30%
East	Eglipton Avenue	30%¹
West	Eglinton Avenue	15%
	Total	100%

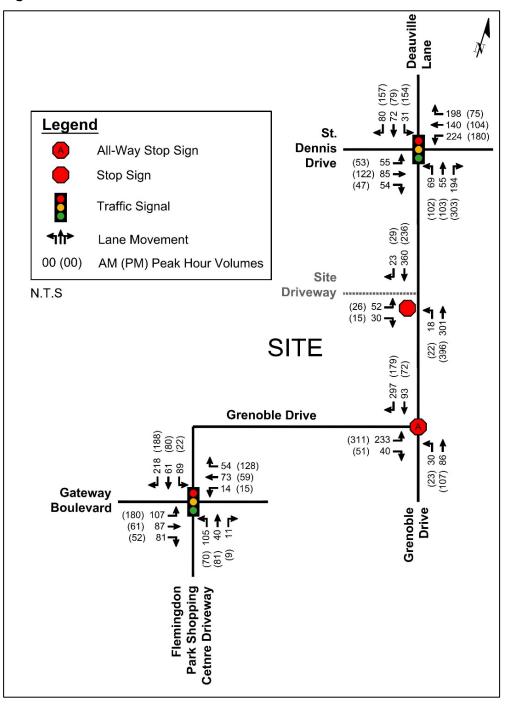
Note: 1. With direct access to Eglinton Avenue from St. Dennis, it was assumed that 80% will utilize St. Dennis.

Deauville Lane Legend Dennis All-Way Stop Sign (18) 14 Drive Stop Sign Traffic Signal 4fr Lane Movement 00 (00) AM (PM) Peak Hour Volumes Site Driveway N.T.S SITE

Grenoble Drive

30

Gateway Boulevard (22) 18


Figure 11: Site Generated Vehicle Traffic

48 Grenoble Drive Transportation Study March 2022

5.0 Total Traffic Conditions

Total traffic volumes consist of background traffic for the horizon year 2028 plus the site traffic illustrated in Figure 11. The resulting 2028 total traffic volumes are shown in Figure 12.

Figure 12: 2028 Total Traffic Volumes

48 Grenoble Drive Transportation Study March 2022

6.0 Traffic Operations

Traffic operations analyses were conducted under existing and future traffic conditions for the weekday AM and PM peak hours at all study intersections. In addition, queueing was reviewed using Synchro's 95th percentile queue. Note that HCM2000 does not report queues of all-way stop control (AWSC); as a result, HCM6 queue results were reported for the Deauville Lane / Grenoble Drive intersection. A comparison of the existing storage / link distances and projected queues are also included. Detailed Synchro and queue reports are provided in Appendices E through G. Existing and future traffic operations are shown in Table 7 and Table 8 for the weekday AM and PM peak hours, respectively.

Table 7: Existing and Future Traffic Operations - AM Peak Hour

	Existing	Existing 2022			Background 2028			Total 2028		
Intersection & Movement	Storage / Link Distance (m)	v/c	LOS	95 th Queue (m)	v/c	LOS	95 th Queue (m)	v/c	LOS	95 th Queue (m)
Deauville Lar	ne / St. Denr	nis Driv	/e (Sigı	nalized)						
Overall	-	0.56	В	-	0.56	В	-	0.66	В	-
EBL	28	0.14	В	8	0.22	В	11	0.21	В	11
EBT	200+	0.12	В	11	0.15	В	14	0.15	В	14
EBR	10	0.03	В	0	0.03	В	0	0.04	В	0
WBL	32	0.65	В	39	0.66	С	39	0.68	С	41
WBTR	200+	0.53	В	39	0.54	В	40	0.53	В	40
NBLTR	100+	0.35	В	28	0.36	В	28	0.49	В	41
SBLTR	100	0.20	Α	20	0.24	В	22	0.24	В	22
Deauville Lar	ne / Grenobl	e Drive	(AWS	C) ²						
EBLR	170 ¹	0.34	Α	18	0.34	Α	18	0.37	В	22
NBLT	200+	0.19	Α	7	0.19	Α	7	0.20	Α	7
SBT	100+	0.16	Α	18	0.16	Α	18	0.16	Α	21
Grenoble Dri	ve / Gatewa	y Boul	evard /	Commerc	cial Dri	veway	(Signalize	ed)		
Overall	-	0.39	В	-	0.40	В	-	0.44	В	-
EBL	48	0.27	В	19	0.29	В	20	0.34	С	24
EBTR	150	0.23	В	23	0.23	В	23	0.23	В	23
WBLTR	200+	0.26	В	22	0.26	В	22	0.26	В	22
NBLTR	30	0.35	В	28	0.35	В	28	0.37	В	28
SBLTR	150 ¹	0.52	В	47	0.53	В	48	0.56	В	52
Deauville Lar	ne / Site Driv	/eway	(Stop C	Control)						
EBLR	20	Not analyzed 0.21 C 6						6		
NBLT 1 Mad	50				aryzeu			0.02	Α	1

Note:

- 1. Measured to the midblock pedestrian crossing.
- 2. A vehicle length of 7.5 m is assumed.

18

48 Grenoble Drive Transportation Study March 2022

Table 8: Existing and Future Traffic Operations – PM Peak Hour

	Existing	Ex	cisting	2022	Вас	kgroun	d 2028	-	Total 20	028
Intersection & Movement	Storage / Link Distance (m)	v/c	LOS	95 th Queue (m)	v/c	LOS	95 th Queue (m)	v/c	LOS	95 th Queue (m)
Deauville Lar	Deauville Lane / St. Dennis Drive (Signalized)									
Overall	-	0.74	В	-	0.75	В	-	0.79	В	-
EBL	28	0.05	В	4	0.17	В	10	0.16	В	10
EBT	200+	0.25	В	18	0.26	В	18	0.25	В	18
EBR	10	0.02	В	0	0.02	В	0	0.03	В	0
WBL	32	0.59	В	28	0.59	В	28	0.60	В	30
WBTR	200+	0.29	В	19	0.31	В	21	0.31	В	21
NBLTR	100+	0.65	В	82	0.65	В	82	0.71	В	92
SBLTR	100	0.64	В	71	0.66	В	75	0.68	В	78
Deauville Lar	ne / Grenobl	e Drive	(AWS	C)						
EBLR	170 ¹	0.41	В	23	0.41	В	23	0.44	В	27
NBLT	200+	0.19	Α	6	0.19	Α	6	0.19	Α	7
SBT	100+	0.11	Α	8	0.11	Α	8	0.11	Α	9
Grenoble Dri	ve / Gatewa	y Boul	evard /	Commerc	cial Dri	veway	(Signalize	ed)		
Overall	-	0.36	В	-	0.38	В	-	0.42	В	-
EBL	48	0.41	С	32	0.46	С	35	0.52	С	40
EBTR	150	0.15	В	17	0.15	В	17	0.15	В	17
WBLTR	200+	0.26	В	24	0.26	В	24	0.26	В	24
NBLTR	30	0.30	В	28	0.30	В	28	0.30	В	28
SBLTR	150 ¹	0.35	В	31	0.36	В	31	0.38	В	32
Deauville Lar	ne / Site Driv	/eway								
EBLR	20			Not an	alyzed			0.10	В	3
NBLT 1 Mas	50				aryzeu			0.02	Α	1

Note: 1. Measured to the midblock pedestrian crossing.

Under existing and future conditions, all movements at study intersections are and will operate with excess capacity and a level of service C or better. The existing and projected queue lengths are and will be within existing storage and link distances. No improvements will be required and / or will be triggered by the proposed development.

7.0 Site Plan Review

A high-level review was conducted of the proposed site plan for multi modal circulation, access, and parking garage layout. The site is well designed to accommodate pedestrians, cyclists, and vehicles. Sidewalks will connect the building entrances to the existing external sidewalk network on Grenoble Drive and Deauville Lane. Cyclists can access the site via the driveway.

An access analysis was conducted for the 4-level underground garage using a PTAC or passenger car design vehicle utilizing AutoTURN. The garage will be able to accommodate the design vehicle at all ramps and on all levels as shown in Appendix H. An access analysis for the proposed refuse pickup / loading space was conducted for a

48 Grenoble Drive Transportation Study March 2022

City refuse truck using AutoTURN and is also shown in Appendix H. The analysis confirms that the proposed geometrics will accommodate a refuse truck, which represents the largest design vehicle that will visit the site.

8.0 Transportation Demand Management (TDM) Plan

The proposed site plan incorporates design elements to support pedestrians, cyclists, and transit users to discourage the dependency on the single-occupant motor vehicle. This complements the City's overall transportation vision to achieve a greater sustainable transportation system by promoting and encouraging alternative modes of travel including walking, cycling and transit.

As noted in Section 2.3 and 3.1, there are several existing and planned Transportation Demand Management (TDM) measures within the study area including:

- Substantial transit service provided immediately near the site via TTC bus routes, a TTC bus terminal, ECLRT and the future Ontario Line.
- Planned bike lanes on both sides of Deauville Lane, Rochefort Drive and Eglinton Avenue East.
- Planned multi-modal mobility hub near the site on the northeast corner of Ferrand Drive / Rochefort Drive. The hub could potentially include bike share, car share, electric charging and ride share spaces.

To further facilitate other modes of travel, several TDM measures are proposed. These measures are expected to reduce not only vehicular trips but also parking demand. Table 9 summarizes the TDM measures proposed for this development along with associated trip reduction estimates. The trip reduction estimates are based on data from the Town of Oakville, the Region of Waterloo, the Vermont Agency of Transportation, City of Berkeley, California, California Air Pollution Control Officers Association, Delaware Department of Transportation, Oregon Department of Environmental Quality, and the City of Sacramento.

Table 9: Proposed TDM Measure

TDM Item Description	Trip Reduction	Comments
Internal secured bicycle	0.5% to 1%	Internal secured bicycle storage within the building for
storage (long-term)		residents
Outdoor bicycle racks	0.5%	Strategically placed at ground level near the main
(short-term)	0.070	entrance / lobby for visitors
Sidewalk Connections	0.5% to 2%	Sidewalk connections from the building's entrances to the existing external sidewalk network along Deauville
		Lane and Grenoble Drive.

48 Grenoble Drive Transportation Study March 2022

Table 9: Proposed TDM Measure continued

TDM Item Description	Trip Reduction	Comments				
Bicycle lanes	0% to 10%	Existing bicycle lanes along St. Dennis Drive, Deauville Lane, south of St. Dennis and Grenoble Drive. Proposed bike lanes on Deauville Lane, north of St. Dennis and along Rochefort Drive.				
		The information package provided to residents will include TTC and GO transit maps and schedules, cycling and trail maps, and information on Smart Commute.				
Transit subsidy 2.5%		Transit subsidy for residents via a preloaded PRESTO pass with \$25 for first time purchasers and renters.				
Real time transit information displays N/A 1		Real time transit information displays in the building lobby or encourage residents to download real time transit information via mobile applications.				
Smart Commute	2% to 15%	Encourage residents to join the Toronto Central Smart Commute Program.				
Bicycle repair stations	1%	Located adjacent to bike storage room(s).				
Unbundled resident parking	2.6 to 13%	Parking spaces will not be bundled with apartments.				
Parking supply reduction	up to 52%	Parking rate reductions for resident and visitor parking are recommended.				

Notes: 1. No data available from the reviewed source

The combination of these proposed TDM measures and the addition of significant transit improvements in the area are expected to reduce vehicle trips by more than 30%.

9.0 Parking and Loading Supply Review

9.1 Bicycle Parking

There are 894 long-term bicycle spaces and 200 short-term bicycle spaces proposed. The City's Zoning By law 569-2013 (ZBL) was reviewed to determine bicycle parking requirements for short-term and long-term spaces, which are summarized in Table 10, based on Bicycle Zone 1. Applicable excerpts from the ZBL are provided in Appendix I.

Table 10: ZBL Bicycle Parking Requirements

Proposed Use	ZBL Use	Туре	Parking Rate	Required Spaces	Provided Spaces	Surplus / Deficit
High-Rise Residential	Apartment Building	Short-Term	0.1 space per unit	100	200	+100
(993 units)		Long-Term	0.9 space per unit	894	894	0

The proposed short-term bicycle parking supply will exceed the ZBL requirements and long-term bicycle parking supply will meet the ZBL requirements.

48 Grenoble Drive Transportation Study March 2022

The City is in the process of reviewing the ZBL's bicycle parking requirements and recently published the *Draft Zoning By-law Amendment for Bicycle Standards*, dated November 25, 2021 (Draft Bicycle ZBA). The short-term bicycle parking requirement for apartment buildings is proposed to be increased from 0.1 to 0.2 spaces per unit (the long-term rates are not proposed to be changed). Therefore, under the Draft Parking ZBA, a total of 199 short-term spaces are required, and the proposed number of short-term bicycle spaces will exceed the Draft Parking ZBA. Applicable excerpts from the Draft Parking ZBA are provided in Appendix J.

Long-term bicycle parking spaces will be provided for residents in secured rooms in the underground garage. Short-term bicycle parking spaces for visitors will be located at grade and within close proximity to building entrances.

9.2 Vehicle Parking

A total of 522 parking spaces are proposed within a 4-level underground garage. There will be 471 spaces for residents and 51 spaces for the visitors. City Council recently enacted By-law 89-2022 (ZBL 89-2022), which amended the ZBL and introduced no minimums for resident parking, reduced visitor parking requirements and lowered maximum parking supply limits. As part of the amendment, the original parking requirements of the ZBL were to be retained for development applications that are currently in process when the amendment was passed. The results of the ZBL's original parking requirements are summarized in Table 11 with the assumption that the site is located in the "All Other Areas of the City". Applicable excerpts from the ZBL are provided in Appendix I.

Table 11: ZBL Vehicle Parking Requirements

	Zanina By	Size	Parking Spaces ¹			
Proposed Use	Zoning By- law Use		Rate	Required	Supply	Surplus / Deficit
1 Bedroom	One Bedroom Apartment	616 units	0.9 / unit	554		
2 Bedrooms	Two Bedroom Apartment	284 units	1.0 / unit	284	471	-478
3 Bedrooms	Three or more Bedroom Apartment	93 units	1.2 / unit	111		
	Resident Total	993	0.95 / unit	949	1	
Visitors	Dwelling Unit in an Apartment Building - Visitors	993 units	0.2 / unit	198	51	-147
	,		Site Totals	1,147	522	-625

Note: 1. The number of spaces was rounded down to the nearest whole number as per the ZBL.

48 Grenoble Drive Transportation Study March 2022

According to ZBL, there will be a deficit of 478 resident spaces and 147 visitor spaces for an overall deficit of 625 spaces. However, it is our opinion that the parking demand suggested by ZBL is overestimating future parking demand for the proposed development, based on the availability of transit and the proposed TDM measures discussed in Section 8.0.

Amending by-law 89-2022 removed minimum parking requirements for residents and lowered the minimum visitor parking requirement for apartment buildings to 2 spaces plus 0.05 spaces per unit. This results in a minimum visitor parking requirement of 51 spaces, which is the proposed supply. ZBL 89-2022 also reduced maximum parking requirements, which are summarized in Table 12, assuming the site is located within the "Other Areas of the City". Applicable excerpts are provided in Appendix K.

Proposed	ZBL Use	Size (units)	Parking Spaces			
Use			Maximum Rate/Unit	Maximum ²	Supply	Under / Over
1 Bedroom	One Bedroom	616	0.9	554		
2 Bedroom	Two Bedroom	284	1.0	284		
3 Bedroom	Three or more Bedrooms	93	1.2	111	471	-478
Residential Requirement		993	0.95	949		
Visitor Requirement		993	0.1 ²	103	51	-52
	-	•	Total	1,052	522	-530

Table 12: ZBL 89-2022 Maximum Vehicle Parking Requirements

Note:

- 1. The number of spaces was rounded down to the nearest whole number as per the ZBL
- 2. Rate of 1 space per unit for the first five units plus 0.1 spaces per unit for the sixth and subsequent units

The proposed supply will not exceed the maximum parking requirements of ZBL 89 -2022.

In summary, the proposed resident and visitor parking supply will comply with the requirements of the new amended ZBL. However, City staff requested that justification for the resident supply be provided.

9.2.1 Resident Vehicle Parking Supply

A review was conducted of other developments with similar surrounding land uses and transit access based on submitted applications. In the review we have included examples from the Yonge-Eglinton Secondary Plan area since, in our opinion, the future Don Mills Secondary Plan area will have similar characteristics such as surrounding land uses, density, transit, walkability and cyclist accommodation. Table 13 provides a comparison of these two secondary plan areas.

48 Grenoble Drive Transportation Study March 2022

Table 13: Secondary Plan Comparison

Measure	Don Mills Secondary Plan Area	Yonge-Eglinton Secondary Plan Area		
Surrounding Land Use	 Future high density residential uses with ground floor commercial including cafes, retail, and restaurants High-rise office buildings Ontario Science Centre with IMAX movie theatre 2 grocery stores 	 High density residential uses with ground floor commercial including restaurants and retail High-rise office buildings Movie theatres Yonge-Eglinton Centre shopping mall 1 grocery store 		
Available Transit (including planned future transit)	 2 TTC regular bus routes with 5-10 mins frequency 1 TTC express route 3 TTC nighttime routes Future bus terminal with 7 bus bays Future ECLRT Future Ontario Line Future small multi-modal mobility hub (bike share, car share, electric charging spaces and ride share spaces) 	 3 TTC regular bus routes with 5-10 mins frequency 3 TTC nighttime routes Bus terminal with approximately 5 bus bays Future ECLRT Subway Line 1 		
Pedestrian Accommodation	Sidewalks on both sides of all arterial, collector and local roads	Sidewalks on both sides of all arterial, collector and local roads		
Cyclist Accommodation	 Existing bike lanes on St. Dennis, Deauville Lane, south of St. Dennis and Grenoble Drive Planned bike lanes on both sides of Deauville Lane, north of St. Dennis, Rochefort, and Eglinton Planned multi-use trail on the west side of Don Mills 	 Existing bike routes on Duplex, Montgomery, and Broadway Avenue Planned bike lanes on both sides of Eglinton 		

These other developments with similar surrounding land use and transit access based on submitted applications are summarized in Table 14.

48 Grenoble Drive Transportation Study March 2022

Table 14: Parking Rates Comparison

Site	Status / Source	Surroundi ng Land Use	Available Transit	Land Use & Size	Proposed Resident Parking Rate (spaces / unit)	
Subject Site 48 Grenoble	-	Residential + Retail + Office	TTC Buses + LRT + Subway within 250 m	993 units	0.47	
Eglinton Avenu	e East Corridor					
175 Wynford Drive	Under Review	Residential	TTC Buses + LRT within 400 m	2,500 units 125 rooms hotel	0.37	
25 St. Dennis	Under Review	Residential + Retail	TTC Buses + LRT within 500 m	849 units 625 m ² Daycare 600 m ² Retail	0.42	
2131 Yonge + 32 Hillsdale	ZBL 891-2016	Residential + Retail	TTC Buses + LRT within 200 m	624 units 7,802.92 m ² of non- residential	0.36	
183-195 Roehampton + 139-145 Redpath	ZBL 1029-2014	Residential + Retail	TTC Buses + LRT within 650 m	446 units	0.35	
18-30 Erskine	ZBL 265-2017	Residential + Retail	TTC Buses + LRT within 500 m	300 units	0.30	
Don Mills / Sheppard Area						
1650 Sheppard East	Staff Recommendatio n	Residential + Retail	Subway + TTC Buses	480 units	0.41	

It is our opinion that these proxy sites clearly show a pattern of reduced parking requirements for similar developments with close proximity to transit. Therefore, it is our further opinion that the resident parking supply of 0.47 spaces / unit will meet or exceed future resident parking demand.

9.2.2 Accessible Parking

ZBL 89-2022 also contains revisions to determining accessible parking space requirements, which are based on "effective" parking spaces. The results of the analysis are summarized in Table 15 and the applicable excerpts are provided in Appendix K.

48 Grenoble Drive Transportation Study March 2022

Table 15: ZBL 89-2022 Effective Parking Requirements

Proposed Use	ZBL Use	Size (units)	Parking Spaces	
			Rate 1	Effective ²
1 Bedroom	One Bedroom	616	0.9	554
2 Bedroom	Two Bedroom	284	1.0	284
3 Bedroom	Three or more Bedrooms	93	1.2	111
Resident Requirement		993	0.95 / unit	949
Visitor Requirement		993	0.1	99
			Total	1,048

Note:

ZBL 89-2022 requires a minimum of 5 accessible parking space plus 1 parking space for every 50 effective parking spaces or part thereof in excess of 100 parking spaces, based on an effective parking requirement of more than 100 spaces. Therefore, 24 accessible parking spaces are required for the development, which is the proposed supply.

9.3 Loading

According to ZBL 569-2013, an apartment building with 400 or more dwelling units requires one Type G and one Type C loading spaces. One Type G and one Type C loading spaces are proposed, which meets the ZBL requirements. The applicable excerpts from ZBL 569-2013 are provided in Appendix I.

10.0 Conclusions

10.1 Traffic Operations

Under existing and future conditions, during both the weekday AM and PM peak hours, all study intersections are operating and will operate with excess capacity, with a level of service C or better and queue lengths within their respective storage lengths and link distances. No improvements will be required and / or will be triggered by the proposed development.

10.2 Site Plan Review

The site is well designed to accommodate all modes of travel. Access and circulation analyses utilizing AutoTurn confirms that the site can accommodate all expected design vehicles.

10.3 Transportation Demand Management (TDM) Plan

Various TDM measures currently exist and are either under construction or are planned that will discourage vehicle use and dependency such as:

^{1.} Space per unit for residential.

^{2.} The number of spaces is rounded down to the nearest whole number as per the ZBL.

Tenblock 27

48 Grenoble Drive Transportation Study March 2022

- Transit service provided near the site via several TTC bus routes, a TTC bus terminal, the under construction ECLRT and the future Ontario Line.
- Existing bicycle lanes along St. Dennis Drive, Grenoble Drive and Deauville Lane, south of St. Dennis Drive.
- Planned bicycle lanes along Deauville Lane, north of St. Dennis Drive and on Rochefort Drive.
- Planned multi-modal mobility hub just north of the site on the northeast corner of Ferrand Drive / Rochefort Drive. The hub could potentially consist of bike share, car share, electric charging stations and ride share spaces.

To further facilitate other modes of travel, several TDM measures are proposed by the development as follows:

- Internal secured bicycle storage for residents.
- Outdoor bicycle racks strategically placed at ground level near the main entrance / lobby for visitors.
- Sidewalk connections from building entrances to the existing external sidewalk network along Deauville Lane and Grenoble Drive.
- An information package will be provided to residents, which will include TTC and GO
 Transit maps and schedules, cycling and trail maps, and information on Smart
 Commute.
- Transit subsidy for residents via a preloaded PRESTO pass with \$25 for first time purchasers and renters.
- Real time transit information displays in building lobbies.
- Encourage residents to join the Toronto Central Smart Commute Program.
- A bicycle repair station or stations located adjacent to bicycle storage room(s).
- Parking spaces will not be bundled with apartments.
- Recommending parking rate reductions for resident and visitor parking.

The combination of these proposed TDM measures and the addition of significant transit improvements in the area are expected to reduce vehicle trips by more than 30%.

10.4 Parking Supply

10.4.1 Bicycle Parking

A total of 200 short-term bike spaces will be provided for visitors near the building's entrances and 894 long-term resident bike spaces are planned to be located within the building. The proposed supply will exceed the current requirements of the ZBL (based on the site falling within Bicycle Zone 1) and will meet the City's future bicycle parking requirements in the Draft Bicycle ZBA.

Tenblock 28

48 Grenoble Drive Transportation Study March 2022

10.4.2 Vehicle Parking

According to the ZBL, the proposed parking supply for residents will have a deficit of 478 spaces and the proposed supply for visitors will have a 147 space deficit.

City Council recently enacted By-Law 89-2022, which amended the ZBL and introduced no minimum parking spaces for residents, lower visitor parking requirements and lower maximum parking limits. The minimum visitor parking requirement for apartment buildings is 51 spaces, which is what is proposed. The proposed supply of 522 resident spaces will not exceed the maximum parking requirements. Therefore, the proposed parking supply will comply with new City requirements.

City staff requested that justification be provided for the resident parking supply. It is our opinion that the proposed resident parking supply of 471 spaces (0.47 space / unit) will adequately serve the parking needs of future residents for the following reasons:

- There are many TTC bus routes along Don Mills Road with bus stops located within 2-minute walk of the site. In addition, there will also be frequent, daily transit service provided via the ECLRT and future Ontario Line. The closest ECLRT station will be the Aga Khan and Museum Station, which will be approximately 690 m (or a 700 m / 10-minute walk / 3-minute bike ride) from the site. The closet Ontario line station will be the Flemingdon Park Station which will be approximately 450 m (or a 480 m / 7-minute walk / 2-minute bike ride) from the site.
- The proposed Transportation Demand Management (TDM) measures summarized in Section 8.0 will further reduce parking demand.
- There have been several similar developments with similar access to transit that have been approved with reduced parking supply variances lower than the proposed parking supply rate.

In addition, the number of proposed accessible and loading spaces will meet the minimum requirements of the ZBL.

Appendix A

Intersection Analysis Methodology

Intersection Analysis Methodology for Motor Vehicles

Signalized intersection analysis considers two separate measures of performance:

- The capacity of all intersection movements, which is based on a volume to capacity ratio that is a measure of the degree of capacity utilized.
- The level of service (LOS) for all intersection movements, which is based on the average control delay per vehicle for the various movements through the intersection and overall. Delay is an indicator of how long a vehicle must wait to complete a movement and is represented by a letter between A and F, with F being the longest delay. The link between LOS and delay (in seconds) for signalized intersections is summarized below.

Level of Service	Control Delay per Vehicle(s)
А	≤10
В	> 10 – 20
С	> 20 – 35
D	> 35 – 55
E	> 55 – 80
F	> 80

Unsignalized intersection analysis considers two separate measures of performance:

- The capacity of the intersection's critical movements, which is based on a volume to capacity ratio.
- The level of service for the critical movements, which is based on the average control
 delay per vehicle for the various critical movements within the intersection. The link
 between LOS and delay (in seconds) for unsignalized intersections is summarized
 below.

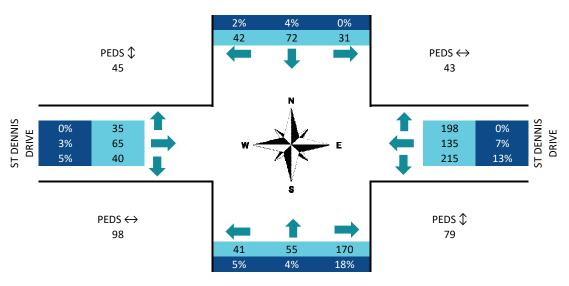
Level of Service	Control Delay per Vehicle(s)
A	0 – 10
В	> 10 – 15
С	> 15 – 25
D	> 25 – 35
E	> 35 – 50
F	> 50

Appendix B

Historical Counts and Signal Timing Plans

AM AND PM PEAK HOUR DIAGRAMS

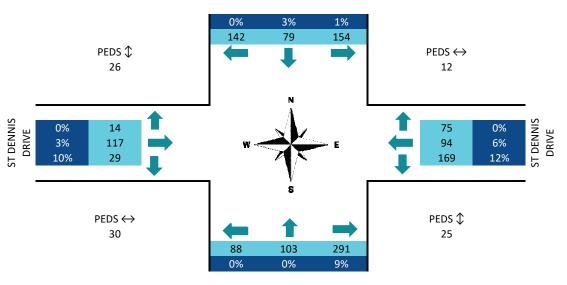
 SOURCE
 CITY OF TORONTO
 AM PEAK HOUR
 PM PEAK HOUR


 INTERSECTION
 DEAUVILLE LANE AT ST DENNIS DR (PX 2522)
 FROM 08:00
 FROM 16:45

 COUNT DATE
 Wednesday, December 12, 2018
 TO 09:00
 TO 17:45

N-S Street DAUVILLE LANE E-W Street ST DENNIS DRIVE TOTAL VEHICLES HEAVY VEHICLE %

AM PEAK HOUR


DAUVILLE LANE

DAUVILLE LANE

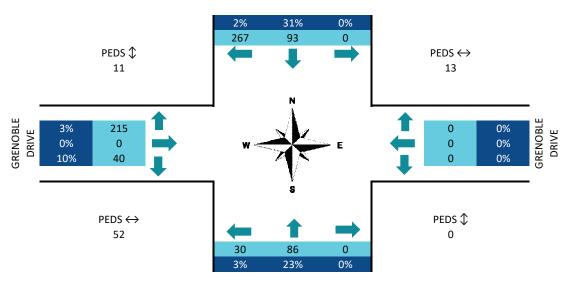
PM PEAK HOUR

DAUVILLE LANE

DAUVILLE LANE

AM AND PM PEAK HOUR DIAGRAMS

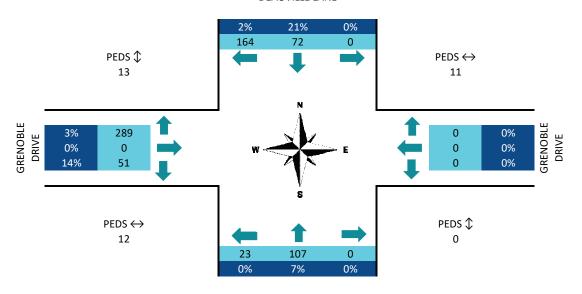
 SOURCE
 CITY OF TORONTO
 AM PEAK HOUR
 PM PEAK HOUR


 INTERSECTION
 DEAUVILLE LANE AT GRENOBLE DR
 FROM 08:00
 FROM 16:30

 COUNT DATE
 Wednesday, December 05, 2018
 TO 09:00
 TO 17:30

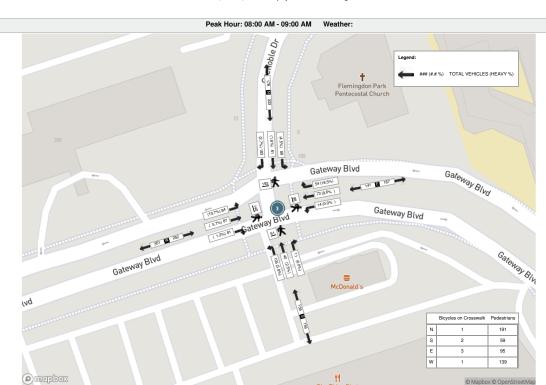
N-S Street DEAUVILLE LANE E-W Street GRENOBLE DRIVE TOTAL VEHICLES HEAVY VEHICLE %

AM PEAK HOUR

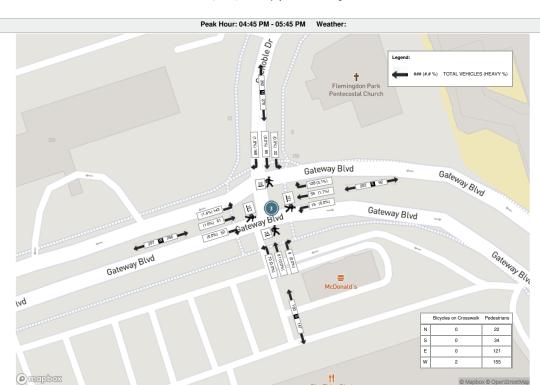

DEAUVILLE LANE

DEAUVILLE LANE

PM PEAK HOUR


DEAUVILLE LANE

DEAUVILLE LANE


Turning Movement Count
Location Name: GATEWAY BLVD & GRENOBLE DR
Date: Thu, Nov 05, 2015 Deployment Lead: Theo Daglis

Turning Movement Page 4 of 5 Count

Turning Movement Count
Location Name: GATEWAY BLVD & GRENOBLE DR
Date: Thu, Nov 05, 2015 Deployment Lead: Theo Daglis

Turning Movement Page 5 of 5 Count LOCATION: St Dennis Dr & Deauville Lane TCS: 2522 (Formerly TCS#3002) MODE/COMMENT: SAP with LPI & WRM PREPARED BY/DATE: Akshay Salwan / August 4, 2020 CHECKED BY/ DATE Masoud Ramezani / August 6, 2020

DISTRICT: Toronto and East York COMPUTER SYSTEM: TransSuite

CONTROLLER/CABINET TYPE: Econolite ASC/3-2100 / TS2T1 CONFLICT FLASH: Red & Red

> DESIGN WALK SPEED: 1.0 m/s (FDW based on full crossing at 1.2 m/s) CHANNEL/DROP: 4093/2

CHECKED BY/ DATE			i / August 6	5, 2020					1.0 m/s (FDW based on full crossing at 1.2 m/s)
IMPLEMENTATION DATE:	August 1		OFF	AM	PM	NGHT	WKND	CHANNEL/DROP:	4093/2
		TP1 Patrn 1-3						Phase Mode	
NEMA Phase		& Backup	All Other Times	06:30-10:00 M-F	15:00-19:00 M-F	22:00-06:30	10:00-19:00	(Fixed/Demanded/Callable)	Remarks
	LI Di	Free				Daily	Sat & Sun		
	Local Plan System Plan		Pattern 1 Plan 1	Pattern 2 Plan 2	Pattern 3 Plan 3	Pattern 4 Plan 4	Pattern 5 Plan 5		
			1 1011 1	1 10.11 2	T IGHT 0	T IGHT I	7 10.17 0		Pedestrian Minimums:
1	WLK								EWWK = 12 secs; EWFD = 16 secs
	FDW MIN								NSWK = 12 secs; NSFD = 15 secs
NOT USED	MAX1								NS phase is callable by vehicle or pedestrian actuation. If a vehicle and/or pedestrian call is
	AMB								received, the maximum NSG is served. The
	ALR SPLIT								NSWK & NSFD are displayed on the pedestrian
	DLY GRN	5						*	signal heads if a vehicle and/or pedestrian call is received.
St Dennis Dr	WLK	12						Fixed	
2	WLK MAX FDW	14 16						Split shown includes 5 sec of	Side Street Passage Time = 3 sec. Leading Pedestrian Interval - EWWK and
	MIN	23						EW LPI	NSWK comes up 5 seconds before vehicle
\	MAX1	25							·
	AMB ALR	3.0 3.0							
	SPLIT	3.0	0	0	0	0	0		
_									1
3									
(
NOT USED									
Deauville Lane	DLY GRN	5							1
4	WLK FDW	12 15						Callable by stopbar loop	
	MIN	22						and/or pushbutton	
	MAX1	22						Split shown includes 5 sec of	
	AMB	3.0						NS LPI	
	ALR SPLIT	3.2	0	0	0	0	0		
						- J			1
5	WLK								
	FDW MIN								
NOT USED	MAX1								
	AMB								
	ALR SPLIT								
	DLY GRN	5						•	
St Dennis Dr	WLK	12						Fixed	
6	WLK MAX FDW	14 16						Split shown includes 5 sec of	
/ <> \	MIN	23						EW LPI	
■ \ ◆ →	MAX1	25							
	AMB ALR	3.0 3.0							
	SPLIT	3.0	0	0	0	0	0		
7	\A/I I/							<u> </u>	
7	WLK FDW								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MIN								
NOT USED	MAX1								
	AMB ALR								
	SPLIT								
Deauville Lane	DLY GRN	5						Outline to the state of the sta	
8	WLK FDW	12 15						Callable by stopbar loop and/or pushbutton	
/ \	MIN	22						and/or pushbullon	
	MAX1	22						Split shown includes 5 sec of	
│	AMB ALR	3.0 3.2						NS LPI	
	SPLIT	3.2	0	0	0	0	0		
	CL		70 (58-70)	70 (58-70)	70 (58-70)	70 (58-70)	70 (58-70)		1
NOTES: Picked up on TransS	OF	00 0040	0	0	0				

NOTES: Picked up on TransSuite on Aug 28, 2013 at 9:22

TCS2522.XLS 08/10/2021 LOCATION: Gateway Blvd & Private Acc/Grenoble Dr (N. Access)

PX: 1974 COMPUTER SYSTEM: TransSuite

N

MODE/COMMENT: FT and LPI
PREPARED BY/DATE: CIMA+/October 2, 2019

CHECKED BY/DATE: Ranajamil Iftikhar/Ameneh Dialameh/October 15, 2019

Gateway Blvd & Private Acc/Grenoble Dr (N. Access)

ATO/DISTRICT/WARD: Area 1 / Toronto and East York / Ward 16

COMPUTER SYSTEM: TransSuite

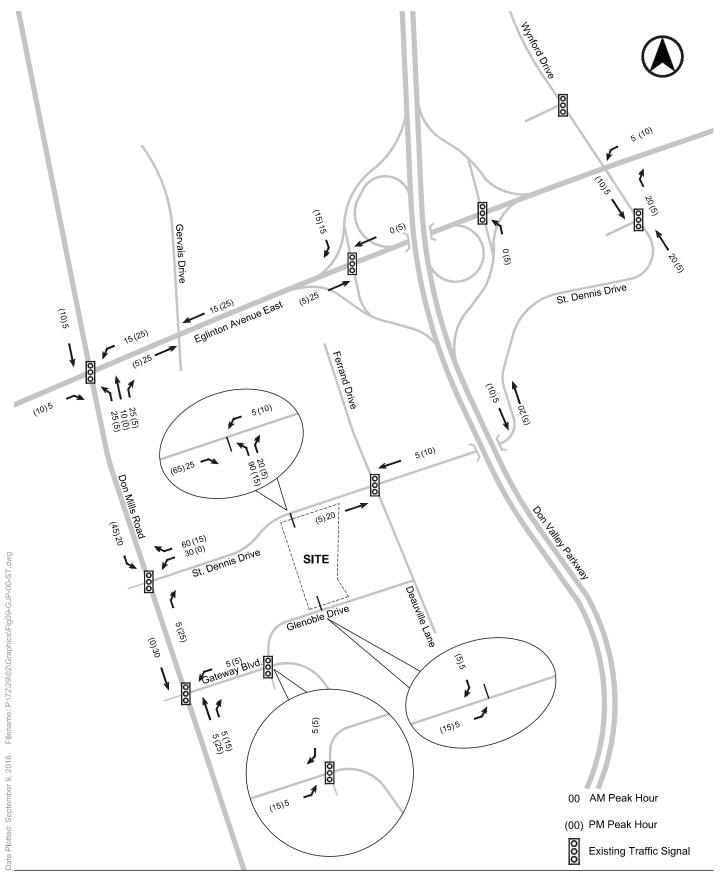
N

CONTROLLER/CABINET TYPE: Econolite ASC/3 1000 / TS2T1

CONFLICT FLASH: Red & Red

CHECKED BY/DATE: Ranajamil Iftikhar/Ameneh Dialameh/October 15, 2019

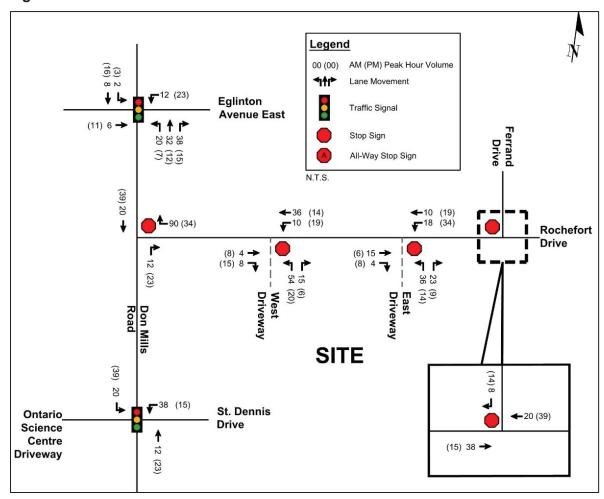
DESIGN WALK SPEED: 1.0 m/s (FDW based on full crossing at 1.2 m/s)


IMPLEMENTATION DATE: October 23, 2019 CHANNEL/DROP: 4093/1

					CONTROLLER FIRMWARE:	
NEMA Phase		OFF All Other Times	AM 06:45-09:30 M-F	PM 15:15-18:45 M-F	Phase Mode (Fixed/Demanded/Callable)	Remarks
	System Plan	1	2	3		
1 NOT USED	Local Plan WLK FDW MIN	Pattern 1	Pattern 2	Pattern 3		Pedestrian Minimums: EWWK = 7 secs; EWFD = 16 secs NSWK = 12 secs; NSFD = 22 secs
Gateway Blvd	MAX1 AMB ALR SPLIT					NS Leading Pedestrian Interval - NSWK comes up 5 seconds before NS vehicle green.
2	WLK 7 FDW 16 MIN 23 MAX1 23 AMB 3.0 ALR 3.6	00			Fixed	
3 NOT USED	SPLIT	30	30	30		
Private Acc	DLY GRN 5 WLK 12				Fixed	
	FDW 22					
	MIN 34 MAX1 34 AMB 3.0				Split shown includes 5 sec of NS LPI	
	ALR 2.7 SPLIT	40	40	40		
5 NOT USED Gateway Blvd	WLK FDW MIN MAX1 AMB ALR SPLIT	40	40	40		
6 Galeway blvd	WLK 7 FDW 16 MIN 23 MAX1 23 AMB 3.0 ALR 3.6 SPLIT	30	30	30	Fixed	
		30	30	30		1
7 NOT USED Grenoble Dr (N. Access)	WLK FDW MIN MAX1 AMB ALR SPLIT DLY GRN 5					
8 (HALLES)	WLK 12 FDW 22 MIN 34 MAX1 34 AMB 3.0 ALR 2.7				Fixed Split shown includes 5 sec of NS LPI	
	SPLIT 2.7	40	40	40		
	CL OF	70 1	70 1	70 1		

Appendix C

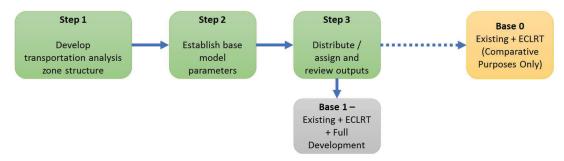
Background Development Traffic


SITE TRAFFIC VOLUMES

1294511 Ontario Inc. 20

7-11 Rochefort Drive October 2021

Figure 11: Site Generated Vehicle Traffic


5.0 Total Traffic Conditions

Total traffic volumes consist of background traffic for the horizon year 2027 plus the site traffic illustrated in Figure 11. The resulting 2027 total traffic volumes are shown in Figure 12.

Appendix D

Don Mills Crossing Study Excerpts

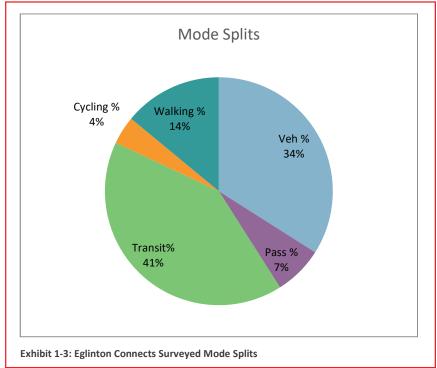
1.3 Analysis Process and Multi-Modal Approach

The analysis process followed a similar methodology to a typical 4-step transportation demand model. It includes, 4 basic steps, trip generation, distribution, modal split and trip assignment.

In the localized sub-area context, mode splits would be more based on the development characteristics, including population demographics, facilities available, and directness of travel paths. As a result, modal split behavior would be an input, that could be calculated separately per development block depending on the development layout and characteristics in relation to overall regional characteristics.

Thus, the proposed sub-area analysis follows 3 simple steps as shown in Exhibit 1-2.

Exhibit 1-2 Analytical Process


1.4 Generate Trips

To remain consistent with other works completed for developments in the area, particularly the Wynford Green Transportation study, the trip generation rates used by their study were reviewed. The first principles approach was considered acceptable in reflecting actual travel demands within the local area and as such, adopted for use in this study.

1.4.1 Residential

Residential trip generation was calculated based on the total number of residents in the TTS zones within the study area, and the total number of trips to and from the zones in AM/PM peak hours. Results and the rate used to develop total trips per resident in the peak hour is shown below. This was used for both existing and future residential developments.

Period	Trips Per Resident
AM Rate	0.204
PM Rate	0.152

However, given the location of the study area, and nearby attractors and generators, the proposed walking and cycling mode shares are likely different for each development block, as well as for internal short distance trips and longer trips outside of the study area. As such, a comprehensive review of each zone was conducted, and assumptions for the mode split in each block was made based on the following factors:

- Proximity to transit station
- Amenities or proposed amenities to promote active and transit use
- Potential for mode share changes based on travel demand management programs

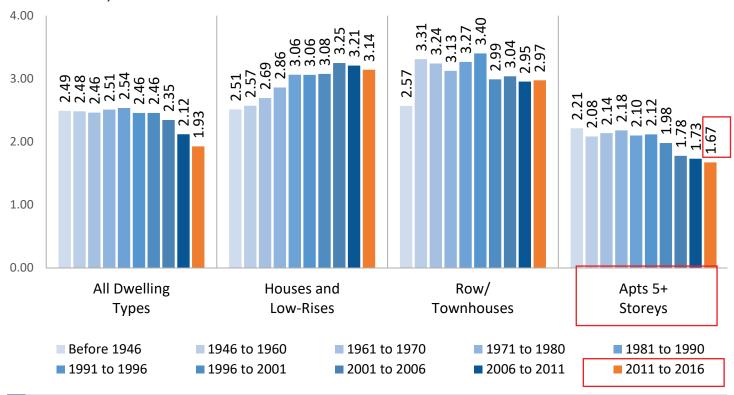
The proposed mode share for each development block and land-use/purpose is shown in **Attachment 1** to this Appendix. Note that these mode splits show potential scenarios where different mobility strategies are effective in adjusting the development mode shares, however major transit improvements would be required to significantly change it further. Additional testing and calculations of diversions are provided in **Appendix L**.

1.5 Distribute Trips

In a typical demand model, there are four trip origins and destination sets that need to be assessed as shown in **Exhibit 1-4**.

Household size is decreasing less in mid/high-rise units and houses and low-rise units: Households in mid/high-rise apartments declined less (0.16) than in row and townhouses (0.30). Households in houses and low-rise units have declined the least, by 0.10 persons per household. There was no change in the average household size of houses and low-rises between 2011 and 2016 (see Figure 39 on page 35).

PPH by Period of Construction


The characteristics of those who occupy recently-built units and those who occupy older dwelling units are very different. When a large number of units of a given type are built, any resulting changes in their occupancy rates can have a significant impact on the overall trends. Table 9 in Appendix E: Number of Dwellings by Period of Construction and Dwelling Type shows that large numbers

of mid/high-rise units were built between the 1960s and 1980s as well as in recent years, and that large numbers of houses and low-rise units were built between 1946 and 1960. Any trends in PPH for those periods of construction and dwelling types will therefore have a greater impact on the PPH of the city as a whole.

The following sections analyse the average PPH rates by different periods of construction by dwelling type, household type, and number of bedrooms.

More recently-built dwellings have on average smaller household sizes: The decline in average household size is particularly notable in apartments of five or more storeys where the average person per household rate for dwellings constructed between 2011 and 2016 was 1.67 persons (see Figure 40).

Figure 40: Average Number of Persons per Household by Dwelling Type and Period of Construction, 2016

Appendix E

Existing Traffic Operations

Ex. AM Baseline

1: Deauville Lane & St. Dennis Drive

	•	-	•	•	←	4	†	-	ţ			
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5
Lane Configurations	*	↑	7	ሻ	f)		4		4			
Traffic Volume (vph)	35	65	40	215	135	41	55	31	72			
Future Volume (vph)	35	65	40	215	135	41	55	31	72			
Lane Group Flow (vph)	38	70	43	231	358	0	286	0	155			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2			6		8		4	1	3	5
Permitted Phases	2		2	6		8		4				
Detector Phase	2	2	2	6	6	8	8	4	4			
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	2.0	2.0
Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	28.2	28.2	28.2	28.2	5.0	5.0	5.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	5.0	5.0	5.0
Total Split (%)	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.2	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2		6.2			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max	Max	None	None	None
v/c Ratio	0.14	0.12	0.08	0.68	0.59		0.43		0.22			
Control Delay	13.2	12.3	0.3	26.3	14.0		8.9		10.0			
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	13.2	12.3	0.3	26.3	14.0		8.9		10.0			
Queue Length 50th (m)	2.5	4.6	0.0	18.8	18.2		8.8		7.0			
Queue Length 95th (m)	7.6	11.0	0.0	38.4	38.1		27.9		19.2			
Internal Link Dist (m)		134.3			138.2		183.9		23.5			
Turn Bay Length (m)	28.0		10.0	32.0								
Base Capacity (vph)	378	838	661	469	790		659		705			
Starvation Cap Reductn	0	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0	0		0		0			
Reduced v/c Ratio	0.10	0.08	0.07	0.49	0.45		0.43		0.22			

Intersection Summary
Cycle Length: 70
Actuated Cycle Length: 54
Natural Cycle: 70
Control Type: Semi Act-Uncoord

Splits and Phases: 1: Deauville Lane & St. Dennis Drive

Timings 1: Deauville Lane & St. Dennis Drive Ex. AM Baseline

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	2.0
Minimum Split (s)	5.0
Total Split (s)	5.0
Total Split (%)	7%
Yellow Time (s)	3.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lead
Lead-Lag Optimize?	Yes
Recall Mode	None
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
latara etia e Comunica	

54545 EX & BG Analysis.syn R.J. Burnside & Associates

	•	-	•	•	—	•	1	†	~	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	ሻ	1>			4			4	
Traffic Volume (vph)	35	65	40	215	135	198	41	55	170	31	72	42
Future Volume (vph)	35	65	40	215	135	198	41	55	170	31	72	42
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Frpb, ped/bikes	1.00	1.00	0.87	1.00	0.96			0.93			0.98	
Flpb, ped/bikes	0.97	1.00	1.00	0.90	1.00			0.99			0.99	
Frt	1.00	1.00	0.85	1.00	0.91			0.91			0.96	
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	
Satd. Flow (prot)	1773	1865	1349	1447	1631			1417			1719	
Flt Permitted	0.45	1.00	1.00	0.71	1.00			0.94			0.90	
Satd. Flow (perm)	846	1865	1349	1083	1631			1336			1555	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	38	70	43	231	145	213	44	59	183	33	77	45
RTOR Reduction (vph)	0	0	29	0	77	0	0	76	0	0	18	0
Lane Group Flow (vph)	38	70	14	231	281	0	0	210	0	0	137	0
Confl. Peds. (#/hr)	43		98	98		43	45		79	79		45
Heavy Vehicles (%)	0%	3%	5%	13%	7%	0%	5%	4%	18%	0%	4%	2%
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6			8			4		
Actuated Green, G (s)	17.6	17.6	17.6	17.6	17.6			24.1			24.1	
Effective Green, g (s)	17.6	17.6	17.6	17.6	17.6			24.1			24.1	
Actuated g/C Ratio	0.33	0.33	0.33	0.33	0.33			0.45			0.45	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	276	608	440	353	532			597			695	
v/s Ratio Prot		0.04			0.17							
v/s Ratio Perm	0.04		0.01	c0.21				c0.16			0.09	
v/c Ratio	0.14	0.12	0.03	0.65	0.53			0.35			0.20	
Uniform Delay, d1	12.8	12.7	12.4	15.5	14.8			9.8			9.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.2	0.1	0.0	4.3	0.9			1.6			0.6	
Delay (s)	13.0	12.8	12.4	19.9	15.7			11.4			9.7	
Level of Service	В	В	В	В	В			В			Α	
Approach Delay (s)		12.7			17.3			11.4			9.7	
Approach LOS		В			В			В			Α	
Intersection Summary												
HCM 2000 Control Delay			14.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.56									
Actuated Cycle Length (s)			53.9		um of lost				18.2			
Intersection Capacity Utiliza	ation		64.2%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

c Critical Lane Group

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Synchro 11	1 Report
00/07/0000	n . v

	•	•	4	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7		ની	†	7	
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	215	40	30	86	93	267	
Future Volume (vph)	215	40	30	86	93	267	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	
Hourly flow rate (vph)	256	48	36	102	111	318	
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2		
Volume Total (vph)	256	48	138	111	318		
Volume Left (vph)	256	0	36	0	0		
Volume Right (vph)	0	48	0	0	318		
Hadj (s)	0.25	-0.43	0.35	0.53	-0.57		
Departure Headway (s)	4.8	3.2	5.1	5.3	3.2		
Degree Utilization, x	0.34	0.04	0.19	0.16	0.28		
Capacity (veh/h)	717	1121	670	640	1112		
Control Delay (s)	10.3	6.3	9.3	9.3	7.5		
Approach Delay (s)	9.7		9.3	7.9			
Approach LOS	Α		Α	Α			
Intersection Summary							
Delay			8.8				
Level of Service			Α				
Intersection Capacity Utilization	on		32.6%	IC	U Level c	f Service	
Analysis Period (min)			15				

Intersection Intersection Delay, s/veh 12.1
Movement EBL EBR NBL NBT SBT SBR Lane Configurations Traffic Vol, veh/h 215 40 30 86 93 267 Future Vol, veh/h 215 40 30 86 93 267 Feak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Heavy Vehicles, % 3 10 3 23 31 2 Mvmt Flow 256 48 36 102 111 318
Movement EBL EBR NBL NBT SBT SBR Lane Configurations Image: Configuration of the co
Movement EBL EBR NBL NBT SBT SBR Lane Configurations T
Lane Configurations 1 4 7 Traffic Vol, veh/h 215 40 30 86 93 267 Future Vol, veh/h 215 40 30 86 93 267 Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Heavy Vehicles, % 3 10 3 23 31 2 Mvmt Flow 256 48 36 102 111 318
Lane Configurations 7 4 7 Traffic Vol, veh/h 215 40 30 86 93 267 Future Vol, veh/h 215 40 30 86 93 267 Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Heavy Vehicles, % 3 10 3 23 31 2 Mvmt Flow 256 48 36 102 111 318
Traffic Vol, veh/h 215 40 30 86 93 267 Future Vol, veh/h 215 40 30 86 93 267 Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Heavy Vehicles, % 3 10 3 23 31 2 Mvmt Flow 256 48 36 102 111 318
Future Vol, veh/h 215 40 30 86 93 267 Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Heavy Vehicles, % 3 10 3 23 31 2 Mvmt Flow 256 48 36 102 111 318
Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 Heavy Vehicles, % 3 10 3 23 31 2 Mvmt Flow 256 48 36 102 111 318
Heavy Vehicles, % 3 10 3 23 31 2 Mvmt Flow 256 48 36 102 111 318
Mvmt Flow 256 48 36 102 111 318
Number of Lanes 1 1 0 1 1 1
Approach EB NB SB
Opposing Approach SB NB
Opposing Lanes 0 2 1
Conflicting Approach Left SB EB
Conflicting Lanes Left 2 2 0
Conflicting Approach Right NB EB
Conflicting Lanes Right 1 0 2
HCM Control Delay 13.8 10.7 11.4
HCM LOS B B
Lane NBLn1 EBLn2 SBLn1 SBLn2
Vol Left, % 26% 100% 0% 0% 0%
Vol Thru, % 74% 0% 0% 100% 0%
Vol Right, % 0% 0% 100% 0% 100%
Sign Control Stop Stop Stop Stop Stop
Traffic Vol by Lane 116 215 40 93 267
LT Vol 30 215 0 0 0
Through Vol 86 0 0 93 0
RT Vol 0 0 40 0 267
RT Vol 0 0 40 0 267
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318 Geometry Grp 4 7 7 7 7 Degree of Util (X) 0.228 0.463 0.072 0.192 0.445
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318 Geometry Grp 4 7 7 7 7 Degree of Util (X) 0.228 0.463 0.072 0.192 0.445 Departure Headway (Hd) 5.943 6.516 5.425 6.245 5.039
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318 Geometry Grp 4 7 7 7 7 Degree of Util (X) 0.228 0.463 0.072 0.192 0.445 Departure Headway (Hd) 5.943 6.516 5.425 6.245 5.039
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318 Geometry Grp 4 7 7 7 7 Degree of Util (X) 0.228 0.463 0.072 0.192 0.445 Departure Headway (Hd) 5.943 6.516 5.425 6.245 5.039 Convergence, Y/N Yes Yes Yes Yes Yes
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318 Geometry Grp 4 7 7 7 7 Degree of Util (X) 0.228 0.463 0.072 0.192 0.445 Departure Headway (Hd) 5.943 6.516 5.425 6.245 5.039 Convergence, Y/N Yes Yes Yes Yes Cap 605 553 661 578 718
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318 Geometry Grp 4 7 7 7 7 Degree of Util (X) 0.228 0.463 0.072 0.192 0.445 Departure Headway (Hd) 5.943 6.516 5.425 6.245 5.039 Convergence, Y/N Yes Yes Yes Yes Yes Cap 605 553 661 578 718 Service Time 3.974 4.242 3.15 3.945 2.739
RT Vol 0 0 40 0 267 Lane Flow Rate 138 256 48 111 318 Geometry Grp 4 7 7 7 7 Degree of Util (X) 0.228 0.463 0.072 0.192 0.445 Departure Headway (Hd) 5.943 6.516 5.425 6.245 5.039 Convergence, Y/N Yes Yes Yes Yes Yes Cap 605 553 661 578 718 Service Time 3.974 4.242 3.15 3.945 2.739 HCM Lane V/C Ratio 0.228 0.463 0.073 0.192 0.443

4. Camananaial	Daireanna	/Cuanabla	D = 1 0	Catalina	Davilaviand
4: Commercial	Driveway	/Grenoble	Drive &	Gateway	Boulevard

	ၨ	-	•	•	4	†	-	ļ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø10	Ø12	
Lane Configurations	۲	4		4		4		4			
Traffic Volume (vph)	84	87	14	73	105	40	89	61			
Future Volume (vph)	84	87	14	73	105	40	89	61			
Lane Group Flow (vph)	88	175	0	147	0	162	0	348			
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2		6		4		8	10	12	
Permitted Phases	2		6		4		8				
Detector Phase	2	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	23.0	23.0	23.0	23.0	5.0	5.0	5.0	5.0	1.0	1.5	
Minimum Split (s)	29.6	29.6	29.6	29.6	34.7	34.7	34.7	34.7	5.0	5.0	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	5.0	5.0	
Total Split (%)	42.9%	42.9%	42.9%	42.9%	50.0%	50.0%	50.0%	50.0%	7%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	3.6	3.6	3.6	3.6	2.7	2.7	2.7	2.7	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0			
Total Lost Time (s)	6.6	6.6		6.6		5.7		5.7			
Lead/Lag					Lag	Lag	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
v/c Ratio	0.27	0.30		0.30		0.36		0.57			
Control Delay	20.0	12.0		13.8		16.2		14.8			
Queue Delay	0.0	0.0		0.0		0.0		0.0			
Total Delay	20.0	12.0		13.8		16.2		14.8			
Queue Length 50th (m)	8.3	9.5		9.2		13.4		22.1			
Queue Length 95th (m)	18.9	22.7		21.9		27.2		46.2			
Internal Link Dist (m)		135.0		25.7		14.9		38.5			
Turn Bay Length (m)	48.0										
Base Capacity (vph)	322	591		483		453		611			
Starvation Cap Reductn	0	0		0		0		0			
Spillback Cap Reductn	0	0		0		0		0			
Storage Cap Reductn	0	0		0		0		0			
Reduced v/c Ratio	0.27	0.30		0.30		0.36		0.57			
Intersection Summary											
Cycle Length: 70											
Actuated Cycle Length: 70											
Offset: 1 (1%), Referenced	to phase 2:	EBTL an	d 6:WBTL	, Start of	Green						
Natural Cycle: 70											

Natural Cycle: 70

Control Type: Pretimed

Splits and Phases: 4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

Synchro 11 Report 03/07/2022 - Page 5

	•	→	•	•	•	•	1	†	1	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>			4			4			4	
Traffic Volume (vph)	84	87	81	14	73	54	105	40	11	89	61	183
Future Volume (vph)	84	87	81	14	73	54	105	40	11	89	61	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frpb, ped/bikes	1.00	0.95			0.88			0.99			0.90	
Flpb, ped/bikes	0.76	1.00			0.99			0.94			0.98	
Frt	1.00	0.93			0.95			0.99			0.93	
Flt Protected	0.95	1.00			0.99			0.97			0.99	
Satd. Flow (prot)	1257	1629			1396			1653			1488	
Flt Permitted	0.73	1.00			0.96			0.63			0.87	
Satd. Flow (perm)	966	1629			1350			1075			1310	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	88	91	84	15	76	56	109	42	11	93	64	191
RTOR Reduction (vph)	0	47	0	0	32	0	0	3	0	0	63	0
Lane Group Flow (vph)	88	128	0	0	115	0	0	159	0	0	285	0
Confl. Peds. (#/hr)	192		61	61		192	140		98	98		140
Heavy Vehicles (%)	11%	6%	1%	14%	10%	19%	4%	3%	0%	5%	2%	3%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	23.4	23.4			23.4			29.3			29.3	
Effective Green, g (s)	23.4	23.4			23.4			29.3			29.3	
Actuated g/C Ratio	0.33	0.33			0.33			0.42			0.42	
Clearance Time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Grp Cap (vph)	322	544			451			449			548	
v/s Ratio Prot		0.08										
v/s Ratio Perm	c0.09				0.09			0.15			c0.22	
v/c Ratio	0.27	0.23			0.26			0.35			0.52	
Uniform Delay, d1	17.1	16.8			17.0			13.9			15.1	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	2.1	1.0			1.4			2.2			3.5	
Delay (s)	19.2	17.8			18.3			16.1			18.6	
Level of Service	В	В			В			В			В	
Approach Delay (s)		18.3			18.3			16.1			18.6	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			18.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.39									
Actuated Cycle Length (s)			70.0	Sı	um of lost	time (s)			14.3			
Intersection Capacity Utiliza	ation		62.5%	IC	U Level o	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

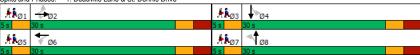
54545 EX & BG Analysis.syn Synchro 11 Report R.J. Burnside & Associates 03/07/2022 - Page 6 Timings 1: Deauville Lane & St. Dennis Drive Timings

1.	Deauville	I ane	ጼ	St	Dennis	Drive

Lane Group	Ø7
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	2.0
Minimum Split (s)	5.0
Total Split (s)	5.0
Total Split (%)	7%
Yellow Time (s)	3.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	Lead
Lead-Lag Optimize?	Yes
Recall Mode	None
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn Reduced v/c Ratio	

Intersection Summary

	۶	→	•	•	←	4	†	/	ļ			
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5
Lane Configurations	*	↑	7	ች	ĵ.		4		4			
Traffic Volume (vph)	14	117	29	169	94	88	103	154	79			
Future Volume (vph)	14	117	29	169	94	88	103	154	79			
Lane Group Flow (vph)	15	122	30	176	176	0	502	0	390			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2			6		8		4	1	3	5
Permitted Phases	2		2	6		8		4				
Detector Phase	2	2	2	6	6	8	8	4	4			
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	2.0	2.0
Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	28.2	28.2	28.2	28.2	5.0	5.0	5.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	5.0	5.0	5.0
Total Split (%)	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.2	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2		6.2			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max	Max	None	None	None
v/c Ratio	0.05	0.25	0.06	0.59	0.35		0.68		0.65			
Control Delay	12.6	14.8	0.3	24.3	11.3		15.5		17.7			
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	12.6	14.8	0.3	24.3	11.3		15.5		17.7			
Queue Length 50th (m)	1.0	8.3	0.0	13.2	7.7		21.6		19.5			
Queue Length 95th (m)	3.9	17.3	0.0	27.7	18.8		#81.3		#71.0			
Internal Link Dist (m)		134.3			138.2		183.9		23.5			
Turn Bay Length (m)	28.0		10.0	32.0								
Base Capacity (vph)	583	890	737	534	847		738		596			
Starvation Cap Reductn	0	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0	0		0		0			
Reduced v/c Ratio	0.03	0.14	0.04	0.33	0.21		0.68		0.65			


Intersection Summary
Cycle Length: 70
Actuated Cycle Length: 50.5

Natural Cycle: 75 Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Deauville Lane & St. Dennis Drive

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Synchro 11 Report 03/07/2022 - Page 1

Ex. PM

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Synchro 11 Report 03/07/2022 - Page 2

Ex. PM

Ex. PM

	•	-	•	•	←	•	1	†	~	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	7	1>			4			4	
Traffic Volume (vph)	14	117	29	169	94	75	88	103	291	154	79	142
Future Volume (vph)	14	117	29	169	94	75	88	103	291	154	79	142
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	0.99			0.97			0.98	
Flpb, ped/bikes	0.99	1.00	1.00	0.97	1.00			1.00			0.99	
Frt	1.00	1.00	0.85	1.00	0.93			0.92			0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.98	
Satd. Flow (prot)	1806	1865	1407	1584	1710			1605			1725	
FIt Permitted	0.65	1.00	1.00	0.68	1.00			0.86			0.66	
Satd. Flow (perm)	1229	1865	1407	1132	1710			1387			1167	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	15	122	30	176	98	78	92	107	303	160	82	148
RTOR Reduction (vph)	0	0	22	0	46	0	0	60	0	0	24	0
Lane Group Flow (vph)	15	122	8	176	130	0	0	442	0	0	366	0
Confl. Peds. (#/hr)	12		30	30		12	26		25	25		26
Heavy Vehicles (%)	0%	3%	10%	12%	6%	0%	0%	0%	9%	1%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6			8			4		
Actuated Green, G (s)	13.4	13.4	13.4	13.4	13.4			24.9			24.9	
Effective Green, g (s)	13.4	13.4	13.4	13.4	13.4			24.9			24.9	
Actuated g/C Ratio	0.27	0.27	0.27	0.27	0.27			0.49			0.49	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	326	494	373	300	453			683			575	
v/s Ratio Prot		0.07			0.08							
v/s Ratio Perm	0.01		0.01	c0.16				c0.32			0.31	
v/c Ratio	0.05	0.25	0.02	0.59	0.29			0.65			0.64	
Uniform Delay, d1	13.8	14.6	13.7	16.1	14.8			9.5			9.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.1	0.3	0.0	2.9	0.4			4.7			5.3	
Delay (s)	13.9	14.8	13.7	19.1	15.1			14.2			14.7	
Level of Service	В	В	В	В	В			В			В	
Approach Delay (s)		14.6			17.1			14.2			14.7	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			15.1	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.74									
Actuated Cycle Length (s)	,		50.5	Sı	um of lost	time (s)			18.2			
Intersection Capacity Utilizat	tion		70.5%		U Level				C			
Analysis Period (min)			15									

54545 EX & BG Analysis.syn	Synchro 11 Report
R.J. Burnside & Associates	03/07/2022 - Page 3

	٠	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7		4	†	7
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	289	51	23	107	72	164
Future Volume (vph)	289	51	23	107	72	164
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	311	55	25	115	77	176
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	311	55	140	77	176	
Volume Left (vph)	311	0	25	0	0	
Volume Right (vph)	0	55	0	0	176	
Hadj (s)	0.25	-0.36	0.13	0.36	-0.57	
Departure Headway (s)	4.7	3.2	4.9	5.2	3.2	
Degree Utilization, x	0.41	0.05	0.19	0.11	0.16	
Capacity (veh/h)	737	1121	684	637	1121	
Control Delay (s)	10.9	6.4	9.1	8.9	6.8	
Approach Delay (s)	10.2		9.1	7.4		
Approach LOS	В		Α	Α		
Intersection Summary						
Delay			9.1			
Level of Service			Α			
Intersection Capacity Utilizat	tion		36.2%	IC	U Level o	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 3: Grenoble Drive & Deauville Lane

HCM 6th AWSC Ex. PM

Intersection						
Intersection Delay, s/veh	12					
Intersection LOS	В					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	LDI\	NUL	4		3DIX
Traffic Vol, veh/h	289	51	23	107	↑ 72	164
Future Vol, veh/h	289	51	23	107	72	164
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	0.93	14	0.93	7	21	0.93
Mvmt Flow	311	55	25	115	77	176
Number of Lanes	1	1	0	1 13	1	1/6
		1		ı		1
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		2		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	2		2		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	14.2		10.5		9.6	
HCM LOS	В		В		Α	
Lane		NBLn1	EBLn1	EBLn2	SBLn1	SBLn2
Lane Vol Left. %		NBLn1 18%	EBLn1 100%	EBLn2	SBLn1	SBLn2
Vol Left, %		18%	100%	0%	0%	0%
Vol Left, % Vol Thru, %		18% 82%	100% 0%	0% 0%	0% 100%	0% 0%
Vol Left, % Vol Thru, % Vol Right, %		18% 82% 0%	100% 0% 0%	0% 0% 100%	0% 100% 0%	0% 0% 100%
Vol Left, % Vol Thru, % Vol Right, % Sign Control		18% 82% 0% Stop	100% 0% 0% Stop	0% 0% 100% Stop	0% 100% 0% Stop	0% 0% 100% Stop
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		18% 82% 0% Stop 130	100% 0% 0% Stop 289	0% 0% 100% Stop 51	0% 100% 0% Stop 72	0% 0% 100% Stop 164
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		18% 82% 0% Stop 130 23	100% 0% 0% Stop 289 289	0% 0% 100% Stop 51	0% 100% 0% Stop 72 0	0% 0% 100% Stop 164 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		18% 82% 0% Stop 130 23 107	100% 0% 0% Stop 289 289 0	0% 0% 100% Stop 51 0	0% 100% 0% Stop 72 0 72	0% 0% 100% Stop 164 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		18% 82% 0% Stop 130 23 107	100% 0% 0% Stop 289 289 0	0% 0% 100% Stop 51 0	0% 100% 0% Stop 72 0 72	0% 0% 100% Stop 164 0 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		18% 82% 0% Stop 130 23 107 0	100% 0% 0% Stop 289 289 0	0% 0% 100% Stop 51 0 0 51 55	0% 100% 0% Stop 72 0 72 0 77	0% 0% 100% Stop 164 0 0 164 176
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		18% 82% 0% Stop 130 23 107 0 140	100% 0% 0% Stop 289 289 0 0 311	0% 0% 100% Stop 51 0 0 51 55	0% 100% 0% Stop 72 0 72 0 77	0% 0% 100% Stop 164 0 0 164 176
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		18% 82% 0% Stop 130 23 107 0 140 4	100% 0% 0% Stop 289 289 0 0 311 7	0% 0% 100% Stop 51 0 0 51 55 7	0% 100% 0% Stop 72 0 72 0 77 7	0% 0% 100% Stop 164 0 0 164 176 7
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713	100% 0% 0% Stop 289 289 0 0 311 7 0.521 6.032	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012	0% 100% 0% Stop 72 0 72 0 77 7 0.131 6.105	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes	0% 100% 0% Stop 72 0 72 0 77 7 0.131 6.105 Yes	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706	0% 100% 0% Stop 72 0 72 7 0.131 6.105 Yes 583	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594 3.828	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808 0.225	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594 3.828 0.524	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808 0.078	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891 0.132	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856 0.251
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808 0.225 10.5	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594 3.828 0.524 15.3	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808 0.078 8.2	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891 0.132 9.8	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856 0.251 9.5
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808 0.225	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594 3.828 0.524	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808 0.078	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891 0.132	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856 0.251

4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

	•	-	•	←	1	†	-	↓			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø10	Ø12	
Lane Configurations	*	f)		4		4		4			
Traffic Volume (vph)	143	61	15	59	70	81	22	80			
Future Volume (vph)	143	61	15	59	70	81	22	80			
Lane Group Flow (vph)	159	126	0	225	0	178	0	300			
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2		6		4		8	10	12	
Permitted Phases	2		6		4		8				
Detector Phase	2	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	23.0	23.0	23.0	23.0	5.0	5.0	5.0	5.0	1.0	1.5	
Minimum Split (s)	29.6	29.6	29.6	29.6	34.7	34.7	34.7	34.7	5.0	5.0	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	5.0	5.0	
Total Split (%)	42.9%	42.9%	42.9%	42.9%	50.0%	50.0%	50.0%	50.0%	7%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	3.6	3.6	3.6	3.6	2.7	2.7	2.7	2.7	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0			
Total Lost Time (s)	6.6	6.6		6.6		5.7		5.7			
Lead/Lag					Lag	Lag	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
v/c Ratio	0.41	0.21		0.36		0.30		0.43			
Control Delay	22.1	10.7		9.5		15.0		9.4			
Queue Delay	0.0	0.0		0.0		0.0		0.0			
Total Delay	22.1	10.7		9.5		15.0		9.4			
Queue Length 50th (m)	15.8	6.1		8.5		14.5		12.6			
Queue Length 95th (m)	31.3	16.6		23.3		27.7		30.1			
Internal Link Dist (m)		135.0		25.7		14.9		38.5			
Turn Bay Length (m)	48.0										
Base Capacity (vph)	384	610		626		587		694			
Starvation Cap Reductn	0	0		0		0		0			
Spillback Cap Reductn	0	0		0		0		0			
Storage Cap Reductn	0	0		0		0		0			
Reduced v/c Ratio	0.41	0.21		0.36		0.30		0.43			

Intersection Summary

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Pretimed

Splits and Phases: 4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

Synchro 11 Report 03/07/2022 - Page 5 54545 EX & BG Analysis.syn R.J. Burnside & Associates

61 61 60 60	EBR	WBL								
61 61 900			WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
61 900			4			4			4	
900	52	15	59	128	70	81	9	22	80	168
	52	15	59	128	70	81	9	22	80	168
0.0	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
6.6			6.6			5.7			5.7	
.00			1.00			1.00			1.00	
.97			0.97			0.99			0.87	
.00			1.00			0.95			0.99	
1.93			0.91			0.99			0.92	
.00			1.00			0.98			1.00	
712			1646			1756			1496	
.00			0.97			0.78			0.97	
712			1609			1395			1456	
.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
68	58	17	66	142	78	90	10	24	89	187
39	0	0	88	0	0	3	0	0	85	0
87	0	0	137	0	0	175	0	0	215	0
	34	34		22	157		121	121		157
2%	0%	0%	2%	3%	0%	0%	0%	0%	0%	2%
NA		Perm	NA		Perm	NA		Perm	NA	
2			6			4			8	
		6			4			8		
3.4			23.4			29.3			29.3	
3.4			23.4			29.3			29.3	
.33			0.33			0.42			0.42	
6.6			6.6			5.7			5.7	
572			537			583			609	
.05						000			000	
.00			0.09			0.13			c0.15	
.15			0.26			0.30			0.35	
6.3			17.0			13.5			13.9	
.00			1.00			1.00			1.00	
0.6			1.1			1.00			1.6	
6.9			18.1			14.9			15.5	
В			В			14.3 B			13.3 B	
9.3			18.1			14.9			15.5	
В			В			В			В	
	17.1	Н	CM 2000	Level of S	Service		В			
	0.36									
	70.0	Sı	ım of lost	time (s)			14.3			
	82.6%	IC	U Level o	of Service			Е			
	15									
		0.36 70.0 82.6%	0.36 70.0 St 82.6% IC	0.36 70.0 Sum of lost 82.6% ICU Level of	0.36 70.0 Sum of lost time (s) 82.6% ICU Level of Service	0.36 70.0 Sum of lost time (s) 82.6% ICU Level of Service	0.36 70.0 Sum of lost time (s) 82.6% ICU Level of Service	0.36 70.0 Sum of lost time (s) 14.3 82.6% ICU Level of Service E	0.36 70.0 Sum of lost time (s) 14.3 82.6% ICU Level of Service E	0.36 70.0 Sum of lost time (s) 14.3 82.6% ICU Level of Service E

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Synchro 11 Report 03/07/2022 - Page 6

Appendix F

Background 2028 Traffic Operations

BG AM

Timings

1: Deauville Lane & St. Dennis Drive

	•	→	*	√	+	1	†	/	 			
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5
Lane Configurations	*	<u></u>	7	7	ą.		4		4			
Traffic Volume (vph)	55	85	40	215	140	41	55	31	72			
Future Volume (vph)	55	85	40	215	140	41	55	31	72			
Lane Group Flow (vph)	59	91	43	231	364	0	286	0	196			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2			6		8		4	1	3	5
Permitted Phases	2		2	6		8		4				
Detector Phase	2	2	2	6	6	8	8	4	4			
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	2.0	2.0
Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	28.2	28.2	28.2	28.2	5.0	5.0	5.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	5.0	5.0	5.0
Total Split (%)	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.2	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2		6.2			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max	Max	None	None	None
v/c Ratio	0.22	0.15	0.08	0.68	0.60		0.44		0.27			
Control Delay	14.5	12.6	0.3	26.5	14.4		9.0		9.3			
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	14.5	12.6	0.3	26.5	14.4		9.0		9.3			
Queue Length 50th (m)	4.0	6.1	0.0	18.9	19.1		8.9		7.9			
Queue Length 95th (m)	10.8	13.6	0.0	38.6	39.7		28.0		21.6			
Internal Link Dist (m)		134.3			138.2		183.9		23.5			
Turn Bay Length (m)	28.0		10.0	32.0								
Base Capacity (vph)	371	835	659	461	785		653		713			
Starvation Cap Reductn	0	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0	0		0		0			
Reduced v/c Ratio	0.16	0.11	0.07	0.50	0.46		0.44		0.27			

Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 54.2 Natural Cycle: 70

Control Type: Semi Act-Uncoord

Splits and Phases: 1: Deauville Lane & St. Dennis Drive

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 2.0 Minimum Split (s) 5.0 Total Split (s) 5.0 Total Split (%) 7% Yellow Time (s) 3.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None v/c Ratio Control Delay Queue Delay Total Delay Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Synchro 11 Report 03/07/2022 - Page 1

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Synchro 11 Report 03/07/2022 - Page 2

BG AM

	•	-	•	•	•	•	1	†	~	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	†	7	7	1>			4			4	
Traffic Volume (vph)	55	85	40	215	140	198	41	55	170	31	72	80
Future Volume (vph)	55	85	40	215	140	198	41	55	170	31	72	80
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Frpb, ped/bikes	1.00	1.00	0.87	1.00	0.96			0.93			0.97	
Flpb, ped/bikes	0.97	1.00	1.00	0.90	1.00			0.99			0.99	
Frt	1.00	1.00	0.85	1.00	0.91			0.91			0.94	
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.99	
Satd. Flow (prot)	1773	1865	1348	1451	1634			1417			1675	
Flt Permitted	0.45	1.00	1.00	0.70	1.00			0.93			0.91	
Satd. Flow (perm)	833	1865	1348	1066	1634			1326			1544	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	59	91	43	231	151	213	44	59	183	33	77	86
RTOR Reduction (vph)	0	0	29	0	74	0	0	77	0	0	34	0
Lane Group Flow (vph)	59	91	14	231	290	0	0	209	0	0	162	0
Confl. Peds. (#/hr)	43		98	98		43	45		79	79		45
Heavy Vehicles (%)	0%	3%	5%	13%	7%	0%	5%	4%	18%	0%	4%	2%
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6			8			4		
Actuated Green, G (s)	17.8	17.8	17.8	17.8	17.8			24.1			24.1	
Effective Green, g (s)	17.8	17.8	17.8	17.8	17.8			24.1			24.1	
Actuated g/C Ratio	0.33	0.33	0.33	0.33	0.33			0.45			0.45	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	274	613	443	350	537			590			687	
v/s Ratio Prot		0.05			0.18							
v/s Ratio Perm	0.07		0.01	c0.22				c0.16			0.11	
v/c Ratio	0.22	0.15	0.03	0.66	0.54			0.36			0.24	
Uniform Delay, d1	13.1	12.8	12.3	15.6	14.8			9.9			9.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.4	0.1	0.0	4.6	1.1			1.7			0.8	
Delay (s)	13.5	12.9	12.3	20.2	15.9			11.6			10.1	
Level of Service	В	В	В	С	В			В			В	
Approach Delay (s)		13.0			17.6			11.6			10.1	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	/ ratio		0.56									
Actuated Cycle Length (s)			54.1	Sı	um of lost	time (s)			18.2			
Intersection Capacity Utilization	n		69.4%		U Level o				С			
Analysis Period (min)			15									
c Critical Lane Group												

54545 EX & BG Analysis.syn	Synchro 11 Report
R.J. Burnside & Associates	03/07/2022 - Page 3

	•	•	•	Ť	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች	7		ની	^	7
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	215	40	30	86	93	267
Future Volume (vph)	215	40	30	86	93	267
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	256	48	36	102	111	318
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	256	48	138	111	318	
Volume Left (vph)	256	0	36	0	0	
Volume Right (vph)	0	48	0	0	318	
Hadj (s)	0.25	-0.43	0.35	0.53	-0.57	
Departure Headway (s)	4.8	3.2	5.1	5.3	3.2	
Degree Utilization, x	0.34	0.04	0.19	0.16	0.28	
Capacity (veh/h)	717	1121	670	640	1112	
Control Delay (s)	10.3	6.3	9.3	9.3	7.5	
Approach Delay (s)	9.7		9.3	7.9		
Approach LOS	Α		Α	Α		
Intersection Summary						
Delay			8.8			
Level of Service			Α			
Intersection Capacity Utilizat	ition		32.6%	IC	U Level o	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 3: Grenoble Drive & Deauville Lane

HCM 6th AWSC BG AM

Intersection						
Intersection Delay, s/veh	12.1					
Intersection LOS	В					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች	#		4		#
Traffic Vol, veh/h	215	40	30	86	93	267
Future Vol, veh/h	215	40	30	86	93	267
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles, %	3	10	3	23	31	2
Mvmt Flow	256	48	36	102	111	318
Number of Lanes	1	1	0	1	1	1
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		2		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	2		2		0	
Conflicting Approach Right	NB		_		EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	13.8		10.7		11.4	
HCM LOS	В		В		В	
l ane		NRI n1	FRI n1	FRI n2	SRI n1	SRI n2
Lane		NBLn1	EBLn1	EBLn2	SBLn1	SBLn2
Vol Left, %		26%	100%	0%	0%	0%
Vol Left, % Vol Thru, %		26% 74%	100% 0%	0% 0%	0% 100%	0% 0%
Vol Left, % Vol Thru, % Vol Right, %		26% 74% 0%	100% 0% 0%	0% 0% 100%	0% 100% 0%	0% 0% 100%
Vol Left, % Vol Thru, % Vol Right, % Sign Control		26% 74% 0% Stop	100% 0% 0% Stop	0% 0% 100% Stop	0% 100% 0% Stop	0% 0% 100% Stop
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		26% 74% 0% Stop 116	100% 0% 0% Stop 215	0% 0% 100% Stop 40	0% 100% 0% Stop 93	0% 0% 100% Stop 267
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		26% 74% 0% Stop 116 30	100% 0% 0% Stop 215 215	0% 0% 100% Stop 40	0% 100% 0% Stop 93	0% 0% 100% Stop 267 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		26% 74% 0% Stop 116 30 86	100% 0% 0% Stop 215 215	0% 0% 100% Stop 40 0	0% 100% 0% Stop 93 0	0% 0% 100% Stop 267 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		26% 74% 0% Stop 116 30 86	100% 0% 0% Stop 215 215 0	0% 0% 100% Stop 40 0	0% 100% 0% Stop 93 0 93	0% 0% 100% Stop 267 0 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		26% 74% 0% Stop 116 30 86 0	100% 0% 0% Stop 215 215 0 0	0% 0% 100% Stop 40 0 40 40	0% 100% 0% Stop 93 0 93 0	0% 0% 100% Stop 267 0 0 267 318
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		26% 74% 0% Stop 116 30 86 0 138	100% 0% 0% Stop 215 215 0 0 256	0% 0% 100% Stop 40 0 40 48 7	0% 100% 0% Stop 93 0 93 0 111	0% 0% 100% Stop 267 0 0 267 318
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		26% 74% 0% Stop 116 30 86 0 138 4	100% 0% 0% Stop 215 215 0 0 256 7	0% 0% 100% Stop 40 0 40 48 7	0% 100% 0% Stop 93 0 93 0 111 7	0% 0% 100% Stop 267 0 0 267 318 7
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		26% 74% 0% Stop 116 30 86 0 138 4 0.228 5.943	100% 0% 0% Stop 215 215 0 0 256 7 0.463 6.516	0% 0% 100% Stop 40 0 0 40 48 7 0.072 5.425	0% 100% 0% Stop 93 0 93 0 111 7 0.192 6.245	0% 0% 100% Stop 267 0 0 267 318 7 0.445 5.039
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		26% 74% 0% Stop 116 30 86 0 138 4 0.228 5.943 Yes	100% 0% 0% Stop 215 215 0 0 256 7 0.463 6.516 Yes	0% 0% 100% Stop 40 0 0 40 48 7 0.072 5.425 Yes	0% 100% 0% Stop 93 0 93 0 111 7 0.192 6.245 Yes	0% 0% 100% Stop 267 0 0 267 318 7 0.445 5.039 Yes
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		26% 74% 0% Stop 116 30 86 0 138 4 0.228 5.943 Yes 605	100% 0% 0% Stop 215 215 0 0 256 7 0.463 6.516 Yes 553	0% 0% 100% Stop 40 0 40 48 7 0.072 5.425 Yes 661	0% 100% 0% Stop 93 0 93 0 111 7 0.192 6.245 Yes 578	0% 0% 100% Stop 267 0 0 267 318 7 0.445 5.039 Yes 718
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		26% 74% 0% Stop 116 30 86 0 138 4 0.228 5.943 Yes 605 3.974	100% 0% 0% Stop 215 215 0 0 256 7 0.463 6.516 Yes 553 4.242	0% 0% 100% Stop 40 0 40 48 7 0.072 5.425 Yes 661 3.15	0% 100% 0% Stop 93 0 93 0 111 7 0.192 6.245 Yes 578 3.945	0% 0% 100% Stop 267 0 0 267 318 7 0.445 5.039 Yes 718 2.739
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		26% 74% 0% Stop 116 30 86 0 138 4 0.228 5.943 Yes 605 3.974 0.228	100% 0% 0% Stop 215 215 0 0 256 7 0.463 6.516 Yes 553 4.242 0.463	0% 0% 100% Stop 40 0 40 48 7 0.072 5.425 Yes 661 3.15 0.073	0% 100% 0% Stop 93 0 93 0 111 7 0.192 6.245 Yes 578 3.945 0.192	0% 0% 100% Stop 267 0 0 267 318 7 0.445 5.039 Yes 718 2.739 0.443
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		26% 74% 0% Stop 116 30 86 0 138 4 0.228 5.943 Yes 605 3.974 0.228 10.7	100% 0% 0% Stop 215 215 0 0 256 7 0.463 6.516 Yes 553 4.242 0.463 14.8	0% 0% 100% Stop 40 0 40 48 7 0.072 5.425 Yes 661 3.15 0.073 8.6	0% 100% 0% Stop 93 0 93 0 111 7 0.192 6.245 Yes 578 3.945 0.192 10.4	0% 0% 100% Stop 267 0 0 267 318 7 0.445 5.039 Yes 718 2.739 0.443 11.7
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		26% 74% 0% Stop 116 30 86 0 138 4 0.228 5.943 Yes 605 3.974 0.228	100% 0% 0% Stop 215 215 0 0 256 7 0.463 6.516 Yes 553 4.242 0.463	0% 0% 100% Stop 40 0 40 48 7 0.072 5.425 Yes 661 3.15 0.073	0% 100% 0% Stop 93 0 93 0 111 7 0.192 6.245 Yes 578 3.945 0.192	0% 0% 100% Stop 267 0 0 267 318 7 0.445 5.039 Yes 718 2.739 0.443

4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

	•	-	•	•	4	†	-	ţ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø10	Ø12	
Lane Configurations	*	f.		4		4		4			
Traffic Volume (vph)	89	87	14	73	105	40	89	61			
Future Volume (vph)	89	87	14	73	105	40	89	61			
Lane Group Flow (vph)	93	175	0	147	0	162	0	353			
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2		6		4		8	10	12	
Permitted Phases	2		6		4		8				
Detector Phase	2	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	23.0	23.0	23.0	23.0	5.0	5.0	5.0	5.0	1.0	1.5	
Minimum Split (s)	29.6	29.6	29.6	29.6	34.7	34.7	34.7	34.7	5.0	5.0	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	5.0	5.0	
Total Split (%)	42.9%	42.9%	42.9%	42.9%	50.0%	50.0%	50.0%	50.0%	7%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	3.6	3.6	3.6	3.6	2.7	2.7	2.7	2.7	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0			
Total Lost Time (s)	6.6	6.6		6.6		5.7		5.7			
Lead/Lag					Lag	Lag	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
v/c Ratio	0.29	0.30		0.30		0.36		0.58			
Control Delay	20.2	12.0		13.8		16.2		15.0			
Queue Delay	0.0	0.0		0.0		0.0		0.0			
Total Delay	20.2	12.0		13.8		16.2		15.0			
Queue Length 50th (m)	8.8	9.5		9.2		13.4		22.5			
Queue Length 95th (m)	19.7	22.7		21.9		27.2		47.1			
Internal Link Dist (m)		135.0		25.7		14.9		38.5			
Turn Bay Length (m)	48.0										
Base Capacity (vph)	325	591		483		452		611			
Starvation Cap Reductn	0	0		0		0		0			
Spillback Cap Reductn	0	0		0		0		0			
Storage Cap Reductn	0	0		0		0		0			
Reduced v/c Ratio	0.29	0.30		0.30		0.36		0.58			


Intersection Summary

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Pretimed

Splits and Phases: 4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

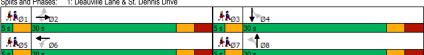
Synchro 11 Report 03/07/2022 - Page 5 54545 EX & BG Analysis.syn R.J. Burnside & Associates

	•	→	•	•	←	•	•	†	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ĵ∍			4			4			4	
Traffic Volume (vph)	89	87	81	14	73	54	105	40	11	89	61	188
Future Volume (vph)	89	87	81	14	73	54	105	40	11	89	61	188
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frpb, ped/bikes	1.00	0.95			0.88			0.99			0.90	
Flpb, ped/bikes	0.76	1.00			0.99			0.94			0.98	
Frt	1.00	0.93			0.95			0.99			0.93	
Flt Protected	0.95	1.00			0.99			0.97			0.99	
Satd. Flow (prot)	1257	1629			1396			1654			1485	
Flt Permitted	0.73	1.00			0.96			0.63			0.87	
Satd. Flow (perm)	966	1629			1350			1070			1310	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	93	91	84	15	76	56	109	42	11	93	64	196
RTOR Reduction (vph)	0	47	0	0	32	0	0	3	0	0	64	0
Lane Group Flow (vph)	93	128	0	0	115	0	0	159	0	0	289	0
Confl. Peds. (#/hr)	192		61	61		192	140		98	98		140
Heavy Vehicles (%)	11%	6%	1%	14%	10%	19%	4%	3%	0%	5%	2%	3%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	23.4	23.4			23.4			29.3			29.3	
Effective Green, g (s)	23.4	23.4			23.4			29.3			29.3	
Actuated g/C Ratio	0.33	0.33			0.33			0.42			0.42	
Clearance Time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Grp Cap (vph)	322	544			451			447			548	
v/s Ratio Prot		0.08										
v/s Ratio Perm	c0.10				0.09			0.15			c0.22	
v/c Ratio	0.29	0.23			0.26			0.35			0.53	
Uniform Delay, d1	17.2	16.8			17.0			13.9			15.2	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	2.3	1.0			1.4			2.2			3.6	
Delay (s)	19.4	17.8			18.3			16.1			18.8	
Level of Service	В	В			В			В			В	
Approach Delay (s)		18.4			18.3			16.1			18.8	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			18.1	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.40									
Actuated Cycle Length (s)			70.0	Sı	um of lost	time (s)			14.3			
Intersection Capacity Utiliza	ation		64.1%	IC	U Level	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

54545 EX & BG Analysis.syn Synchro 11 Report R.J. Burnside & Associates 03/07/2022 - Page 6

Cycle Length: 70 Actuated Cycle Length: 50.3 Natural Cycle: 80 Control Type: Semi Act-Uncoord BG PM

1: Deauville Lane & St. Dennis Drive


Timings

1: Deddville Edile d	01 20											
	•	→	•	1	←	•	Ť	\	Ţ			
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5
Lane Configurations	*	<u></u>	7	*	1	HUL	4	ODL	4	D.I.		20
Traffic Volume (vph)	53	122	29	169	104	88	103	154	79			
Future Volume (vph)	53	122	29	169	104	88	103	154	79			
Lane Group Flow (vph)	55	127	30	176	186	0	502	0	406			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2			6		8		4	1	3	5
Permitted Phases	2	_	2	6	•	8	·	4	•	•		·
Detector Phase	2	2	2	6	6	8	8	4	4			
Switch Phase	_	_	_	•	U	U	U	-				
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	2.0	2.0
Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	28.2	28.2	28.2	28.2	5.0	5.0	5.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	5.0	5.0	5.0
Total Split (%)	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.2	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2		6.2			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max	Max	None	None	None
v/c Ratio	0.17	0.26	0.06	0.59	0.37	WIGA	0.69	WIGA	0.68	140110	140110	140110
Control Delay	14.3	14.9	0.2	24.2	12.1		15.8		18.4			
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	14.3	14.9	0.2	24.2	12.1		15.8		18.4			
Queue Length 50th (m)	3.7	8.7	0.0	13.2	8.8		21.8		20.6			
Queue Length 95th (m)	9.8	18.0	0.0	27.7	20.4		#81.7		#74.5			
Internal Link Dist (m)	0.0	134.3	0.0	21.1	138.2		183.9		23.5			
Turn Bay Length (m)	28.0	101.0	10.0	32.0	100.2		100.0		20.0			
Base Capacity (vph)	582	895	740	535	851		732		600			
Starvation Cap Reductn	0	000	0	0	0.01		0		000			
Spillback Cap Reductn	0	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0	0		0		0			
Reduced v/c Ratio	0.09	0.14	0.04	0.33	0.22		0.69		0.68			
	0.03	0.14	0.04	0.00	0.22		0.03		0.00			
Intersection Summary												

Splits and Phases: 1: Deauville Lane & St. Dennis Drive

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Synchro 11 Report 03/07/2022 - Page 1

54545 EX & BG Analysis.syn R.J. Burnside & Associates

BG PM

	۶	-	•	1	←	•	1	1	/	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	†	7	ሻ	1			4			4	
Traffic Volume (vph)	53	122	29	169	104	75	88	103	291	154	79	157
Future Volume (vph)	53	122	29	169	104	75	88	103	291	154	79	157
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	0.99			0.97			0.98	
Flpb, ped/bikes	0.99	1.00	1.00	0.97	1.00			1.00			0.99	
Frt	1.00	1.00	0.85	1.00	0.94			0.92			0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.98	
Satd. Flow (prot)	1807	1865	1407	1585	1716			1606			1720	
Flt Permitted	0.64	1.00	1.00	0.68	1.00			0.85			0.67	
Satd. Flow (perm)	1218	1865	1407	1127	1716			1382			1178	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	55	127	30	176	108	78	92	107	303	160	82	164
RTOR Reduction (vph)	0	0	22	0	42	0	0	61	0	0	27	0
Lane Group Flow (vph)	55	127	8	176	144	0	0	441	0	0	379	0
Confl. Peds. (#/hr)	12		30	30		12	26		25	25		26
Heavy Vehicles (%)	0%	3%	10%	12%	6%	0%	0%	0%	9%	1%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6			8			4		
Actuated Green, G (s)	13.4	13.4	13.4	13.4	13.4			24.6			24.6	
Effective Green, g (s)	13.4	13.4	13.4	13.4	13.4			24.6			24.6	
Actuated g/C Ratio	0.27	0.27	0.27	0.27	0.27			0.49			0.49	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	325	497	375	300	458			677			577	
v/s Ratio Prot		0.07			0.08							
v/s Ratio Perm	0.05		0.01	c0.16				0.32			c0.32	
v/c Ratio	0.17	0.26	0.02	0.59	0.31			0.65			0.66	
Uniform Delay, d1	14.1	14.5	13.6	16.0	14.7			9.6			9.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.2	0.3	0.0	2.9	0.4			4.8			5.8	
Delay (s)	14.4	14.7	13.6	18.9	15.1			14.4			15.4	
Level of Service	В	В	В	В	В			В			В	
Approach Delay (s)		14.5			17.0			14.4			15.4	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			15.3	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ity ratio		0.75									
Actuated Cycle Length (s)			50.2	Sı	um of lost	time (s)			18.2			
Intersection Capacity Utilizati	on		83.0%	IC	U Level o	f Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 11 Report 03/07/2022 - Page 3

	•	•	4	†	↓	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7		4	†	7
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	289	51	23	107	72	164
Future Volume (vph)	289	51	23	107	72	164
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	311	55	25	115	77	176
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	311	55	140	77	176	
Volume Left (vph)	311	0	25	0	0	
Volume Right (vph)	0	55	0	0	176	
Hadj (s)	0.25	-0.36	0.13	0.36	-0.57	
Departure Headway (s)	4.7	3.2	4.9	5.2	3.2	
Degree Utilization, x	0.41	0.05	0.19	0.11	0.16	
Capacity (veh/h)	737	1121	684	637	1121	
Control Delay (s)	10.9	6.4	9.1	8.9	6.8	
Approach Delay (s)	10.2		9.1	7.4		
Approach LOS	В		Α	Α		
Intersection Summary						
Delay			9.1			
Level of Service			Α			
Intersection Capacity Utiliza	ation		36.2%	IC	U Level o	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 3: Grenoble Drive & Deauville Lane

HCM 6th AWSC BG PM

Intersection						
Intersection Delay, s/veh	12					
Intersection LOS	В					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ች	7	NDL	4	<u> </u>	7
Traffic Vol, veh/h	289	51	23	107	72	164
Future Vol, veh/h	289	51	23	107	72	164
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	3	14	0.50	7	21	2
Mvmt Flow	311	55	25	115	77	176
Number of Lanes	1	1	0	1	1	170
		1		'	•	1
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		2		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	2		2		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	14.2		10.5		9.6	
HCM LOS	В		В		Α	
Lane		NBLn1	EBLn1	EBLn2	SBLn1	SBLn2
Lane Vol Left. %					SBLn1	SBLn2
Vol Left, %		18%	100%	0%	0%	0%
Vol Left, % Vol Thru, %		18% 82%	100% 0%	0% 0%	0% 100%	0% 0%
Vol Left, % Vol Thru, % Vol Right, %		18% 82% 0%	100% 0% 0%	0% 0% 100%	0% 100% 0%	0% 0% 100%
Vol Left, % Vol Thru, % Vol Right, % Sign Control		18% 82% 0% Stop	100% 0% 0% Stop	0% 0% 100% Stop	0% 100% 0% Stop	0% 0% 100% Stop
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		18% 82% 0% Stop 130	100% 0% 0% Stop 289	0% 0% 100% Stop 51	0% 100% 0% Stop 72	0% 0% 100% Stop 164
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		18% 82% 0% Stop 130 23	100% 0% 0% Stop 289 289	0% 0% 100% Stop 51	0% 100% 0% Stop 72 0	0% 0% 100% Stop 164
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		18% 82% 0% Stop 130 23 107	100% 0% 0% Stop 289 289	0% 0% 100% Stop 51 0	0% 100% 0% Stop 72 0	0% 0% 100% Stop 164 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		18% 82% 0% Stop 130 23 107	100% 0% 0% Stop 289 289 0	0% 0% 100% Stop 51 0	0% 100% 0% Stop 72 0 72	0% 0% 100% Stop 164 0 0
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		18% 82% 0% Stop 130 23 107 0	100% 0% 0% Stop 289 289 0	0% 0% 100% Stop 51 0 0 51 55	0% 100% 0% Stop 72 0 72 0 77	0% 0% 100% Stop 164 0 0 164 176
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		18% 82% 0% Stop 130 23 107 0 140	100% 0% 0% Stop 289 289 0 0 311	0% 0% 100% Stop 51 0 0 51 55	0% 100% 0% Stop 72 0 72 0 77	0% 0% 100% Stop 164 0 0 164 176
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		18% 82% 0% Stop 130 23 107 0 140 4	100% 0% 0% Stop 289 289 0 0 311 7	0% 0% 100% Stop 51 0 0 51 55 7	0% 100% 0% Stop 72 0 72 0 77 7	0% 0% 100% Stop 164 0 0 164 176 7
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713	100% 0% 0% Stop 289 289 0 0 311 7 0.521 6.032	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012	0% 100% 0% Stop 72 0 72 0 77 7 0.131 6.105	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes	0% 100% 0% Stop 72 0 72 0 77 7 0.131 6.105 Yes	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706	0% 100% 0% Stop 72 0 72 0 77 7 0.131 6.105 Yes 583	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594 3.828	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808 0.225	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594 3.828 0.524	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808 0.078	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891 0.132	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856 0.251
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808 0.225 10.5	100% 0% 0% Stop 289 289 0 0 311 7 0.521 6.032 Yes 594 3.828 0.524 15.3	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808 0.078 8.2	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891 0.132 9.8	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856 0.251 9.5
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		18% 82% 0% Stop 130 23 107 0 140 4 0.222 5.713 Yes 622 3.808 0.225	100% 0% 0% Stop 289 0 0 311 7 0.521 6.032 Yes 594 3.828 0.524	0% 0% 100% Stop 51 0 0 51 55 7 0.076 5.012 Yes 706 2.808 0.078	0% 100% 0% Stop 72 0 77 7 0.131 6.105 Yes 583 3.891 0.132	0% 0% 100% Stop 164 0 0 164 176 7 0.248 5.071 Yes 700 2.856 0.251

4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

	•	-	•	←	4	†	-	ļ			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø10	Ø12	
Lane Configurations	*	f)		4		4		4			
Traffic Volume (vph)	158	61	15	59	70	81	22	80			
Future Volume (vph)	158	61	15	59	70	81	22	80			
Lane Group Flow (vph)	176	126	0	225	0	178	0	305			
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2		6		4		8	10	12	
Permitted Phases	2		6		4		8				
Detector Phase	2	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	23.0	23.0	23.0	23.0	5.0	5.0	5.0	5.0	1.0	1.5	
Minimum Split (s)	29.6	29.6	29.6	29.6	34.7	34.7	34.7	34.7	5.0	5.0	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	5.0	5.0	
Total Split (%)	42.9%	42.9%	42.9%	42.9%	50.0%	50.0%	50.0%	50.0%	7%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	3.6	3.6	3.6	3.6	2.7	2.7	2.7	2.7	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0			
Total Lost Time (s)	6.6	6.6		6.6		5.7		5.7			
Lead/Lag					Lag	Lag	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
v/c Ratio	0.46	0.21		0.36		0.30		0.44			
Control Delay	23.1	10.7		9.5		15.0		9.4			
Queue Delay	0.0	0.0		0.0		0.0		0.0			
Total Delay	23.1	10.7		9.5		15.0		9.4			
Queue Length 50th (m)	17.8	6.1		8.5		14.5		12.7			
Queue Length 95th (m)	34.8	16.6		23.3		27.7		30.5			
Internal Link Dist (m)		135.0		25.7		14.9		38.5			
Turn Bay Length (m)	48.0										
Base Capacity (vph)	384	610		626		586		695			
Starvation Cap Reductn	0	0		0		0		0			
Spillback Cap Reductn	0	0		0		0		0			
Storage Cap Reductn	0	0		0		0		0			
Reduced v/c Ratio	0.46	0.21		0.36		0.30		0.44			


Intersection Summary

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Pretimed

Splits and Phases: 4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

Synchro 11 Report 03/07/2022 - Page 5 54545 EX & BG Analysis.syn R.J. Burnside & Associates

	٠	→	•	•	←	•	4	†	/	\	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.			4			4			4	
Traffic Volume (vph)	158	61	52	15	59	128	70	81	9	22	80	173
Future Volume (vph)	158	61	52	15	59	128	70	81	9	22	80	173
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frpb, ped/bikes	1.00	0.97			0.97			0.99			0.87	
Flpb, ped/bikes	0.98	1.00			1.00			0.95			0.99	
Frt	1.00	0.93			0.91			0.99			0.92	
Flt Protected	0.95	1.00			1.00			0.98			1.00	
Satd. Flow (prot)	1766	1712			1646			1757			1492	
Flt Permitted	0.62	1.00			0.97			0.78			0.97	
Satd. Flow (perm)	1150	1712			1609			1394			1453	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	176	68	58	17	66	142	78	90	10	24	89	192
RTOR Reduction (vph)	0	39	0	0	88	0	0	3	0	0	87	0
Lane Group Flow (vph)	176	87	0	0	137	0	0	175	0	0	218	0
Confl. Peds. (#/hr)	22		34	34		22	157		121	121		157
Heavy Vehicles (%)	1%	2%	0%	0%	2%	3%	0%	0%	0%	0%	0%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	23.4	23.4			23.4			29.3			29.3	
Effective Green, g (s)	23.4	23.4			23.4			29.3			29.3	
Actuated g/C Ratio	0.33	0.33			0.33			0.42			0.42	
Clearance Time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Grp Cap (vph)	384	572			537			583			608	
v/s Ratio Prot		0.05										
v/s Ratio Perm	c0.15				0.09			0.13			c0.15	
v/c Ratio	0.46	0.15			0.26			0.30			0.36	
Uniform Delay, d1	18.3	16.3			17.0			13.5			13.9	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	3.9	0.6			1.1			1.3			1.6	
Delay (s)	22.2	16.9			18.1			14.9			15.6	
Level of Service	С	В			В			В			В	
Approach Delay (s)		20.0			18.1			14.9			15.6	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			17.3	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity ratio			0.38									
Actuated Cycle Length (s)			70.0	S	um of lost time (s)			14.3				
Intersection Capacity Utilization			82.9%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

54545 EX & BG Analysis.syn R.J. Burnside & Associates

Appendix G

Total 2028 Traffic Operations

Timings
1: Deauville Lane & St. Dennis Drive

Timings

Tot AM

1: Deauville Lane & St. Dennis Drive

	•	→	•	•	←	4	†	-	ţ			
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5
Lane Configurations	7	↑	7	7	f)		4		4			
Traffic Volume (vph)	55	85	54	224	140	69	55	31	72			
Future Volume (vph)	55	85	54	224	140	69	55	31	72			
Lane Group Flow (vph)	59	91	58	241	364	0	342	0	196			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2			6		8		4	1	3	5
Permitted Phases	2		2	6		8		4				
Detector Phase	2	2	2	6	6	8	8	4	4			
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	2.0	2.0
Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	28.2	28.2	28.2	28.2	5.0	5.0	5.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	5.0	5.0	5.0
Total Split (%)	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.2	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2		6.2			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max	Max	None	None	None
v/c Ratio	0.21	0.15	0.11	0.70	0.59		0.55		0.28			
Control Delay	14.3	12.5	0.4	27.1	14.1		12.5		9.4			
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	14.3	12.5	0.4	27.1	14.1		12.5		9.4			
Queue Length 50th (m)	4.0	6.1	0.0	19.9	19.1		14.7		8.2			
Queue Length 95th (m)	10.7	13.6	0.0	40.6	39.7		40.9		21.6			
Internal Link Dist (m)		134.3			138.2		123.7		23.5			
Turn Bay Length (m)	28.0		10.0	32.0								
Base Capacity (vph)	370	826	654	457	778		618		700			
Starvation Cap Reductn	0	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0	0		0		0			
Reduced v/c Ratio	0.16	0.11	0.09	0.53	0.47		0.55		0.28			

Intersection Summary

Cycle Length: 70

Actuated Cycle Length: 54.7 Natural Cycle: 70

Control Type: Semi Act-Uncoord

Splits and Phases: 1: Deauville Lane & St. Dennis Drive

Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 2.0 Minimum Split (s) 5.0 Total Split (s) 5.0 Total Split (%) 7% Yellow Time (s) 3.0 All-Red Time (s) 0.0 Lost Time Adjust (s) Total Lost Time (s) Lead/Lag Lead Lead-Lag Optimize? Yes Recall Mode None v/c Ratio Control Delay Queue Delay Total Delay Queue Length 50th (m) Queue Length 95th (m) Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph)
Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio Intersection Summary

54545 Tot Analysis.syn R.J. Burnside & Associates Synchro 11 Report 03/07/2022 - Page 1 54545 Tot Analysis.syn R.J. Burnside & Associates Synchro 11 Report 03/07/2022 - Page 2

Tot AM

EBL Movement Lane Configurations Traffic Volume (vph) 224 Future Volume (vph) 55 85 54 224 140 198 69 55 194 31 72 80 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 6.0 6.0 6.0 6.0 6.0 6.2 6.2 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Frpb, ped/bikes 1.00 1.00 0.87 1.00 0.96 0.93 0.97 Flpb, ped/bikes 0.99 0.99 0.97 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.91 0.92 0.94 0.85 Flt Protected 0.95 1.00 1.00 0.95 1.00 0.99 0.99 Satd. Flow (prot) 1633 1424 1676 1773 1865 1347 1450 Flt Permitted 0.45 1 00 1 00 0.70 1.00 0.89 0.90 Satd. Flow (perm) 839 1865 1347 1065 1633 1278 1529 Peak-hour factor, PHF 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Adj. Flow (vph) 91 58 241 151 213 74 59 209 33 77 86 RTOR Reduction (vph) 34 0 73 68 39 0 0 0 Lane Group Flow (vph) 59 91 19 241 291 ٥ n 274 Λ Λ 162 Λ Confl. Peds. (#/hr) 0% 3% 7% 18% Heavy Vehicles (%) 5% 13% 0% 5% 4% 0% 4% 2% Turn Type NA Perm NA NA NA Perm Protected Phases 2 6 8 4 Permitted Phases 24.0 24.0 Actuated Green, G (s) 18.3 18.3 18.3 18.3 18.3 Effective Green, g (s) 18.3 18.3 18.3 18.3 18.3 24.0 24.0 Actuated g/C Ratio 0.34 0.34 0.34 0.34 0.34 0.44 0.44 Clearance Time (s) 6.0 6.0 6.0 6.2 6.2 6.0 6.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 281 626 452 357 548 562 673 v/s Ratio Prot 0.18 0.05 v/s Ratio Perm 0.07 0.01 c0.23 c0.21 0.11 v/c Ratio 0.21 0.15 0.04 0.68 0.53 0.49 0.24 Uniform Delay, d1 12.9 12.6 12.2 15.5 14.6 10.9 9.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.1 0.0 1.0 3.0 0.8 5.0 13.9 Delay (s) 13.3 12.7 12.2 20.5 15.6 10.4 Level of Service В В В R Approach Delay (s) 12.8 17.6 13.9 10.4 Approach LOS В В В

HCM 2000 Control Delay	14.9	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.66			
Actuated Cycle Length (s)	54.5	Sum of lost time (s)	18.2	
Intersection Capacity Utilization	76.7%	ICU Level of Service	D	
Analysis Period (min)	15			
o Critical Lana Croup				

c Critical Lane Group

54545 Tot Analysis.syn Synchro 11 Report R.J. Burnside & Associates 03/07/2022 - Page 3

	•	•	1	†	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	î,	
Traffic Volume (veh/h)	52	30	18	301	360	23
Future Volume (Veh/h)	52	30	18	301	360	23
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	57	33	20	327	391	25
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)					148	
pX, platoon unblocked	0.94	0.94	0.94		170	
vC, conflicting volume	770	404	416			
vC1, stage 1 conf vol	770	707	710			
vC2, stage 2 conf vol						
vCu, unblocked vol	722	330	343			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	84	95	98			
cM capacity (veh/h)	365	671	1150			
. , , ,						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	90	347	416			
Volume Left	57	20	0			
Volume Right	33	0	25			
cSH	439	1150	1700			
Volume to Capacity	0.21	0.02	0.24			
Queue Length 95th (m)	5.8	0.4	0.0			
Control Delay (s)	15.3	0.6	0.0			
Lane LOS	С	Α				
Approach Delay (s)	15.3	0.6	0.0			
Approach LOS	С					
Intersection Summary						
Average Delay			1.9			
Intersection Capacity Utilizat	tion		42.0%	IC	U Level o	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis

2: Deauville Lane & Site Driveway

54545 Tot Analysis.syn Synchro 11 Report R.J. Burnside & Associates 03/07/2022 - Page 4 HCM 6th AWSC Tot AM

-						
Intersection						
Intersection Delay, s/veh	13.1					
Intersection LOS	В					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	1		4		7
Traffic Vol, veh/h	233	40	30	86	93	297
Future Vol., veh/h	233	40	30	86	93	297
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles, %	3	10	3	23	31	2
Mymt Flow	277	48	36	102	111	354
Number of Lanes	1	1	0	1	1	1
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		2		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	2		2		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	15		11		12.4	
HCM LOS	В		В		В	
Lane		NBLn1	EBLn1	EBLn2	SBLn1	SBLn2
Vol Left, %		26%	100%	0%	0%	0%
Vol Thru, %		74%	0%	0%	100%	0%
Vol Right, %		0%	0%	100%	0%	100%
Sign Control		Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		116	233	40	93	297
LT Vol		30	233	0	0	0
Through Vol		86	0	0	93	0
RT Vol		0	0	40	0	297
Lane Flow Rate		138	277	48	111	354
Geometry Grp		4	7	7	7	7
Degree of Util (X)		0.234	0.51	0.073	0.194	0.502
Departure Headway (Hd)		6.088	6.615	5.523	6.317	5.11
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes
Cap		590	546	649	569	707
Service Time		4.124	4.344	3.251	4.047	2.841
HCM Lane V/C Ratio		0.234	0.507	0.074	0.195	0.501
HCM Control Delay		11	16.1	8.7	10.6	12.9
						В
HCM Lane LOS HCM 95th-tile Q		B 0.9	C 2.9	A 0.2	B 0.7	B 2.8

Tot AM

3: Grenoble D	rive &	Deauville	Lane
---------------	--------	-----------	------

	•	•	4	†	ļ	∢ _	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻ	7		4	†	7	
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	233	40	30	86	93	297	
Future Volume (vph)	233	40	30	86	93	297	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	
Hourly flow rate (vph)	277	48	36	102	111	354	
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2		
Volume Total (vph)	277	48	138	111	354		
Volume Left (vph)	277	0	36	0	0		
Volume Right (vph)	0	48	0	0	354		
Hadj (s)	0.25	-0.43	0.35	0.53	-0.57		
Departure Headway (s)	4.8	3.2	5.1	5.3	3.2		
Degree Utilization, x	0.37	0.04	0.20	0.16	0.31		
Capacity (veh/h)	717	1121	661	631	1113		
Control Delay (s)	10.6	6.3	9.4	9.4	7.7		
Approach Delay (s)	10.0		9.4	8.1			
Approach LOS	В		Α	Α			
Intersection Summary							
Delay			8.9				
Level of Service			Α				
Intersection Capacity Utiliza	ition		32.8%	IC	U Level c	of Service	
Analysis Period (min)			15				

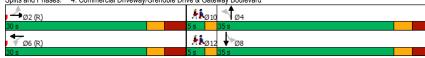
Timings

4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

	•	-	•	•	1	Ť	-	¥			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø10	Ø12	
Lane Configurations	٦	ĵ.		4		4		4			
Traffic Volume (vph)	107	87	14	73	105	40	89	61			
Future Volume (vph)	107	87	14	73	105	40	89	61			
Lane Group Flow (vph)	111	175	0	147	0	162	0	384			
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2		6		4		8	10	12	
Permitted Phases	2		6		4		8				
Detector Phase	2	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	23.0	23.0	23.0	23.0	5.0	5.0	5.0	5.0	1.0	1.5	
Minimum Split (s)	29.6	29.6	29.6	29.6	34.7	34.7	34.7	34.7	5.0	5.0	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	5.0	5.0	
Total Split (%)	42.9%	42.9%	42.9%	42.9%	50.0%	50.0%	50.0%	50.0%	7%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	3.6	3.6	3.6	3.6	2.7	2.7	2.7	2.7	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0			
Total Lost Time (s)	6.6	6.6		6.6		5.7		5.7			
Lead/Lag					Lag	Lag	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max								
v/c Ratio	0.34	0.30		0.30		0.37		0.62			
Control Delay	21.3	12.0		13.8		16.6		15.5			
Queue Delay	0.0	0.0		0.0		0.0		0.0			
Total Delay	21.3	12.0		13.8		16.6		15.5			
Queue Length 50th (m)	10.8	9.5		9.2		13.5		24.3			
Queue Length 95th (m)	23.2	22.7		21.9		27.5		51.4			
Internal Link Dist (m)		135.0		25.7		14.9		38.5			
Turn Bay Length (m)	48.0										
Base Capacity (vph)	325	591		483		438		622			
Starvation Cap Reductn	0	0		0		0		0			
Spillback Cap Reductn	0	0		0		0		0			
Storage Cap Reductn	0	0		0		0		0			
Reduced v/c Ratio	0.34	0.30		0.30		0.37		0.62			

Intersection Summary

Cycle Length: 70
Actuated Cycle Length: 70


Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70 Control Type: Pretimed

54545 Tot Analysis.syn

R.J. Burnside & Associates

Splits and Phases: 4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

Tot AM

HCM Signalized Intersection Capacity Analysis 4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

	۶	→	•	•	—	4	1	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ.			4			4			4	
Traffic Volume (vph)	107	87	81	14	73	54	105	40	11	89	61	218
Future Volume (vph)	107	87	81	14	73	54	105	40	11	89	61	218
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frpb, ped/bikes	1.00	0.95			0.88			0.99			0.89	
Flpb, ped/bikes	0.76	1.00			0.99			0.94			0.98	
Frt	1.00	0.93			0.95			0.99			0.92	
Flt Protected	0.95	1.00			0.99			0.97			0.99	
Satd. Flow (prot)	1257	1629			1396			1660			1471	
Flt Permitted	0.73	1.00			0.96			0.60			0.88	
Satd. Flow (perm)	966	1629			1350			1036			1310	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	111	91	84	15	76	56	109	42	11	93	64	227
RTOR Reduction (vph)	0	47	0	0	32	0	0	3	0	0	74	0
Lane Group Flow (vph)	111	128	0	0	115	0	0	159	0	0	310	0
Confl. Peds. (#/hr)	192	00/	61	61	400/	192	140	00/	98	98	00/	140
Heavy Vehicles (%)	11%	6%	1%	14%	10%	19%	4%	3%	0%	5%	2%	3%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2		_	6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	23.4	23.4			23.4			29.3			29.3	
Effective Green, g (s)	23.4	23.4			23.4			29.3			29.3	
Actuated g/C Ratio	0.33	0.33			0.33			0.42			0.42	
Clearance Time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Grp Cap (vph)	322	544			451			433			548	
v/s Ratio Prot		0.08										
v/s Ratio Perm	c0.11	0.00			0.09			0.15			c0.24	
v/c Ratio	0.34	0.23			0.26			0.37			0.56	
Uniform Delay, d1	17.5	16.8			17.0			14.0			15.5	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	2.9	1.0			1.4			2.4			4.2	
Delay (s)	20.4	17.8			18.3			16.4			19.7	
Level of Service	С	B 18.9			B 18.3			B 16.4			B 19.7	
Approach Delay (s) Approach LOS		18.9 B			18.3 B			10.4 B			19.7 B	
		ь			ь			ь			ь	
Intersection Summary			40.7		014 0000							
HCM 2000 Control Delay	L		18.7	н	CM 2000	Level of 3	service		В			
HCM 2000 Volume to Capacit	ty ratio		0.44 70.0	0.	um after-	time (c)			14.2			
Actuated Cycle Length (s)			71.3%		um of lost				14.3 C			
Intersection Capacity Utilization Analysis Period (min)	JII		15	IC	U Level o	o service			Ü			
c Critical Lane Group			10									
C Chilical Lane Group												

54545 Tot Analysis.syn R.J. Burnside & Associates

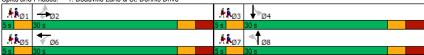
Synchro 11 Report 03/07/2022 - Page 7

Timings 1: Deauville Lane & St. Dennis Drive Timings

Tot PM 1: Deauville Lane & St. Dennis Drive

ane Group	Ø7
ane Configurations	
Fraffic Volume (vph)	
uture Volume (vph)	
ane Group Flow (vph)	
Turn Type	
Protected Phases	7
Permitted Phases	
Detector Phase	
Switch Phase	
Minimum Initial (s)	2.0
Minimum Split (s)	5.0
Total Split (s)	5.0
Total Split (%)	7%
Yellow Time (s)	3.0
All-Red Time (s)	0.0
ost Time Adjust (s)	
Total Lost Time (s)	
_ead/Lag	Lead
_ead-Lag Optimize?	Yes
Recall Mode	None
//c Ratio	
Control Delay	
Queue Delay	
Total Delay	
Queue Length 50th (m)	
Queue Length 95th (m)	
nternal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
ntersection Summary	

	۶	→	•	•	←	4	†	/	ļ			
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	Ø1	Ø3	Ø5
Lane Configurations	*	<u></u>	7	7	ĵ.		4		4			
Traffic Volume (vph)	53	122	47	180	104	102	103	154	79			
Future Volume (vph)	53	122	47	180	104	102	103	154	79			
Lane Group Flow (vph)	55	127	49	188	186	0	529	0	406			
Turn Type	Perm	NA	Perm	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2			6		8		4	1	3	5
Permitted Phases	2		2	6		8		4				
Detector Phase	2	2	2	6	6	8	8	4	4			
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	2.0	2.0	2.0
Minimum Split (s)	29.0	29.0	29.0	29.0	29.0	28.2	28.2	28.2	28.2	5.0	5.0	5.0
Total Split (s)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	5.0	5.0	5.0
Total Split (%)	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	42.9%	7%	7%	7%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	3.0	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.2	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0		6.2		6.2			
Lead/Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max	Max	None	None	None
v/c Ratio	0.17	0.25	0.10	0.61	0.36		0.74		0.70			
Control Delay	14.1	14.6	0.4	24.6	11.8		18.6		20.1			
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0		0.0			
Total Delay	14.1	14.6	0.4	24.6	11.8		18.6		20.1			
Queue Length 50th (m)	3.7	8.7	0.0	14.4	8.8		25.4		21.5			
Queue Length 95th (m)	9.7	17.9	0.0	29.6	20.2		#91.9		#77.6			
Internal Link Dist (m)		134.3			138.2		123.7		23.5			
Turn Bay Length (m)	28.0		10.0	32.0								
Base Capacity (vph)	578	889	736	531	846		717		580			
Starvation Cap Reductn	0	0	0	0	0		0		0			
Spillback Cap Reductn	0	0	0	0	0		0		0			
Storage Cap Reductn	0	0	0	0	0		0		0			
Reduced v/c Ratio	0.10	0.14	0.07	0.35	0.22		0.74		0.70			
Intersection Summary												


Cycle Length: 70
Actuated Cycle Length: 50.7

Natural Cycle: 80
Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Deauville Lane & St. Dennis Drive

54545 Tot Analysis.syn R.J. Burnside & Associates Synchro 11 Report 03/07/2022 - Page 1

Tot PM

54545 Tot Analysis.syn R.J. Burnside & Associates

Synchro 11 Report 03/07/2022 - Page 2

1: Deauville Lane & St. Dennis Drive

	•	-	•	•	•	•	1	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	1			4			4	
Traffic Volume (vph)	53	122	47	180	104	75	102	103	303	154	79	157
Future Volume (vph)	53	122	47	180	104	75	102	103	303	154	79	157
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Frpb, ped/bikes	1.00	1.00	0.95	1.00	0.99			0.97			0.98	
Flpb, ped/bikes	0.99	1.00	1.00	0.97	1.00			1.00			1.00	
Frt	1.00	1.00	0.85	1.00	0.94			0.92			0.95	
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.99			0.98	
Satd. Flow (prot)	1806	1865	1407	1584	1716			1607			1720	
Flt Permitted	0.64	1.00	1.00	0.68	1.00			0.85			0.66	
Satd. Flow (perm)	1218	1865	1407	1127	1716			1373			1152	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	55	127	49	188	108	78	106	107	316	160	82	164
RTOR Reduction (vph)	0	0	35	0	41	0	0	60	0	0	27	0
Lane Group Flow (vph)	55	127	14	188	145	0	0	469	0	0	379	0
Confl. Peds. (#/hr)	12		30	30		12	26		25	25		26
Heavy Vehicles (%)	0%	3%	10%	12%	6%	0%	0%	0%	9%	1%	3%	0%
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6			8			4		
Actuated Green, G (s)	14.0	14.0	14.0	14.0	14.0			24.5			24.5	
Effective Green, g (s)	14.0	14.0	14.0	14.0	14.0			24.5			24.5	
Actuated g/C Ratio	0.28	0.28	0.28	0.28	0.28			0.48			0.48	
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			6.2			6.2	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0			3.0			3.0	
Lane Grp Cap (vph)	336	514	388	311	473			663			556	
v/s Ratio Prot		0.07			0.08							
v/s Ratio Perm	0.05		0.01	c0.17				c0.34			0.33	
v/c Ratio	0.16	0.25	0.03	0.60	0.31			0.71			0.68	
Uniform Delay, d1	13.9	14.3	13.4	15.9	14.5			10.3			10.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00			1.00	
Incremental Delay, d2	0.2	0.3	0.0	3.3	0.4			6.3			6.6	
Delay (s)	14.1	14.5	13.4	19.2	14.9			16.6			16.7	
Level of Service	В	В	В	В	В			В			В	
Approach Delay (s)		14.2			17.1			16.6			16.7	
Approach LOS		В			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			16.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.79			,						
Actuated Cycle Length (s)	,		50.7	Si	um of lost	time (s)			18.2			
Intersection Capacity Utiliza	ation		81.4%		U Level				D			
Analysis Period (min)			15			22						
c Critical Lane Group												

c Critical Lane Group

 54545 Tot Analysis.syn
 Synchro 11 Report

 R.J. Burnside & Associates
 03/07/2022 - Page 3

	•	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	1	
Traffic Volume (veh/h)	26	15	22	396	236	29
Future Volume (Veh/h)	26	15	22	396	236	29
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	28	16	24	430	257	32
Pedestrians	20	10	24	430	231	JZ
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)				M	Mana	
Median type				None	None	
Median storage veh)					440	
Upstream signal (m)					148	
pX, platoon unblocked						
vC, conflicting volume	751	273	289			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	751	273	289			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	93	98	98			
cM capacity (veh/h)	374	771	1284			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	44	454	289			
	44 28	454 24	289			
Volume Left						
Volume Right	16	0	32			
cSH	460	1284	1700			
Volume to Capacity	0.10	0.02	0.17			
Queue Length 95th (m)	2.4	0.4	0.0			
Control Delay (s)	13.6	0.6	0.0			
Lane LOS	В	Α				
Approach Delay (s)	13.6	0.6	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Utiliza	ation		48.8%	IC	CU Level of	Service
Analysis Period (min)			15			

 54545 Tot Analysis.syn
 Synchro 11 Report

 R.J. Burnside & Associates
 03/07/2022 - Page 4

HCM 6th AWSC Tot PM

-						
Intersection						
Intersection Delay, s/veh	12.9					
Intersection LOS	В					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7		4	^	7
Traffic Vol, veh/h	311	51	23	107	72	179
Future Vol, veh/h	311	51	23	107	72	179
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles, %	3	14	0	7	21	2
Mvmt Flow	334	55	25	115	77	192
Number of Lanes	1	1	0	1	1	1
Approach	EB		NB		SB	
Opposing Approach			SB		NB	
Opposing Lanes	0		2		1	
Conflicting Approach Left	SB		EB			
Conflicting Lanes Left	2		2		0	
Conflicting Approach Right	NB				EB	
Conflicting Lanes Right	1		0		2	
HCM Control Delay	15.7		10.7		10	
HCM LOS	С		В		A	
Lane		NBLn1	EBLn1	EBLn2	SBLn1	SBLn2
Vol Left, %		18%	100%	0%	0%	0%
Vol Thru, %		82%	0%	0%	100%	0%
Vol Right, %		02 %	0%	100%	0%	100%
Sign Control		Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane		130	311	51 51	72	179
LT Vol		23	311	0	0	0
Through Vol		107	0	0	72	0
RT Vol		0	0	51	0	179
Lane Flow Rate		140	334	55	77	192
Geometry Grp		4	7	7	7	7
Degree of Util (X)		0.23	0.574	0.079	0.136	0.282
Departure Headway (Hd)		5.922	6.184	5.163	6.309	5.273
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes
Cap		607	585	695	572	685
Service Time		3.952	3.905	2.884	4.009	2.973
HCM Lane V/C Ratio		0.231	0.571	0.079	0.135	0.28
HCM Control Delay		10.7	16.9	8.3	10	10
HCM Lane LOS		В	C	A	A	A
HCM 95th-tile Q		0.9	3.6	0.3	0.5	1.2

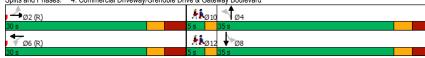
HCM Unsignalized Intersection Capacity Analysis 3: Grenoble Drive & Deauville Lane

Tot PM

	۶	•	1	†	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7		ની	†	7
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	311	51	23	107	72	179
Future Volume (vph)	311	51	23	107	72	179
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	334	55	25	115	77	192
Direction, Lane #	EB 1	EB 2	NB 1	SB 1	SB 2	
Volume Total (vph)	334	55	140	77	192	
Volume Left (vph)	334	0	25	0	0	
Volume Right (vph)	0	55	0	0	192	
Hadj (s)	0.25	-0.36	0.13	0.36	-0.57	
Departure Headway (s)	4.7	3.2	5.0	5.3	3.2	
Degree Utilization, x	0.44	0.05	0.19	0.11	0.17	
Capacity (veh/h)	737	1121	674	627	1121	
Control Delay (s)	11.4	6.4	9.2	9.0	6.9	
Approach Delay (s)	10.7		9.2	7.5		
Approach LOS	В		Α	Α		
Intersection Summary						
Delay			9.3			
Level of Service			Α			
Intersection Capacity Utiliza	ation		37.5%	IC	U Level o	f Service
Analysis Period (min)			15			

Tot PM Timings

	•	-	•	•	4	†	-	↓			
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	Ø10	Ø12	
Lane Configurations	7	ĵ.		4		4		4			
Traffic Volume (vph)	180	61	15	59	70	81	22	80			
Future Volume (vph)	180	61	15	59	70	81	22	80			
Lane Group Flow (vph)	200	126	0	225	0	178	0	322			
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA			
Protected Phases		2		6		4		8	10	12	
Permitted Phases	2		6		4		8				
Detector Phase	2	2	6	6	4	4	8	8			
Switch Phase											
Minimum Initial (s)	23.0	23.0	23.0	23.0	5.0	5.0	5.0	5.0	1.0	1.5	
Minimum Split (s)	29.6	29.6	29.6	29.6	34.7	34.7	34.7	34.7	5.0	5.0	
Total Split (s)	30.0	30.0	30.0	30.0	35.0	35.0	35.0	35.0	5.0	5.0	
Total Split (%)	42.9%	42.9%	42.9%	42.9%	50.0%	50.0%	50.0%	50.0%	7%	7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
All-Red Time (s)	3.6	3.6	3.6	3.6	2.7	2.7	2.7	2.7	0.0	0.0	
Lost Time Adjust (s)	0.0	0.0		0.0		0.0		0.0			
Total Lost Time (s)	6.6	6.6		6.6		5.7		5.7			
Lead/Lag					Lag	Lag	Lag	Lag	Lead	Lead	
Lead-Lag Optimize?					Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	Max	Max	Max	Max	Max	Max	Max	Max	Max	Max	
v/c Ratio	0.52	0.21		0.36		0.31		0.46			
Control Delay	24.7	10.7		9.5		15.0		9.4			
Queue Delay	0.0	0.0		0.0		0.0		0.0			
Total Delay	24.7	10.7		9.5		15.0		9.4			
Queue Length 50th (m)	20.8	6.1		8.5		14.5		13.0			
Queue Length 95th (m)	39.7	16.6		23.3		27.7		31.7			
Internal Link Dist (m)		135.0		25.7		14.9		38.5			
Turn Bay Length (m)	48.0										
Base Capacity (vph)	384	610		626		583		700			
Starvation Cap Reductn	0	0		0		0		0			
Spillback Cap Reductn	0	0		0		0		0			
Storage Cap Reductn	0	0		0		0		0			
Reduced v/c Ratio	0.52	0.21		0.36		0.31		0.46			


Intersection Summary

Cycle Length: 70
Actuated Cycle Length: 70

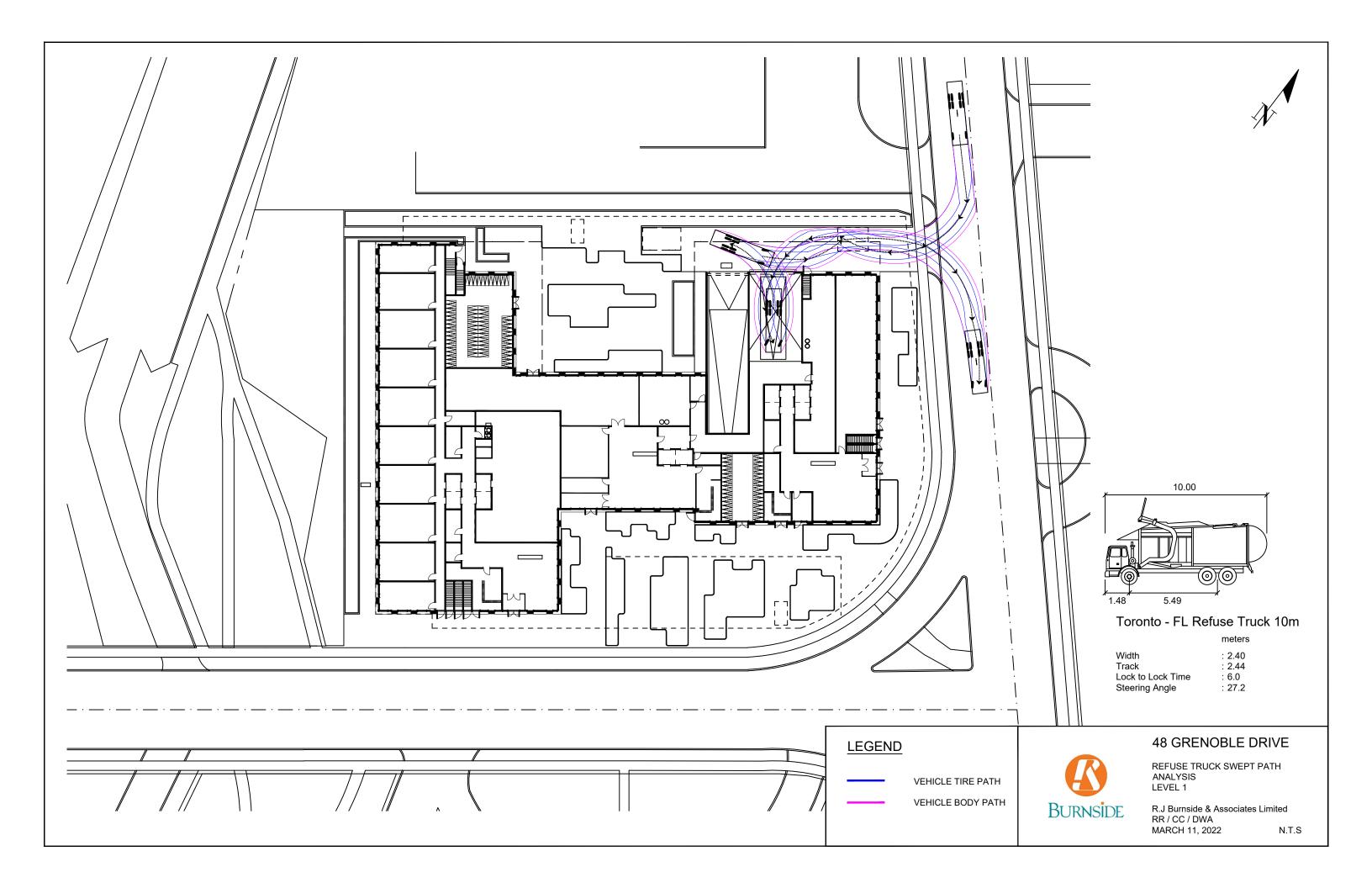
Offset: 1 (1%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

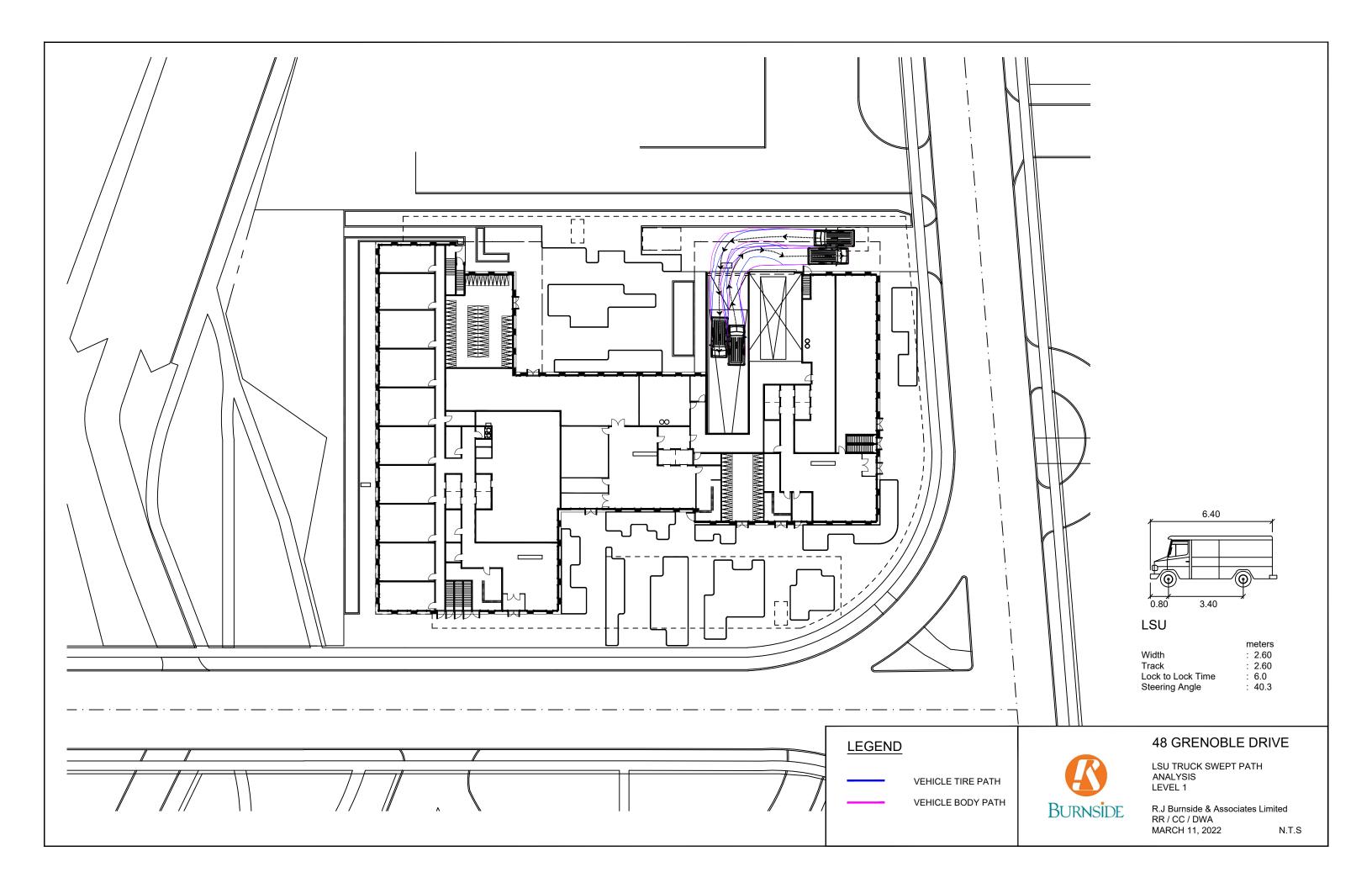
Natural Cycle: 70 Control Type: Pretimed

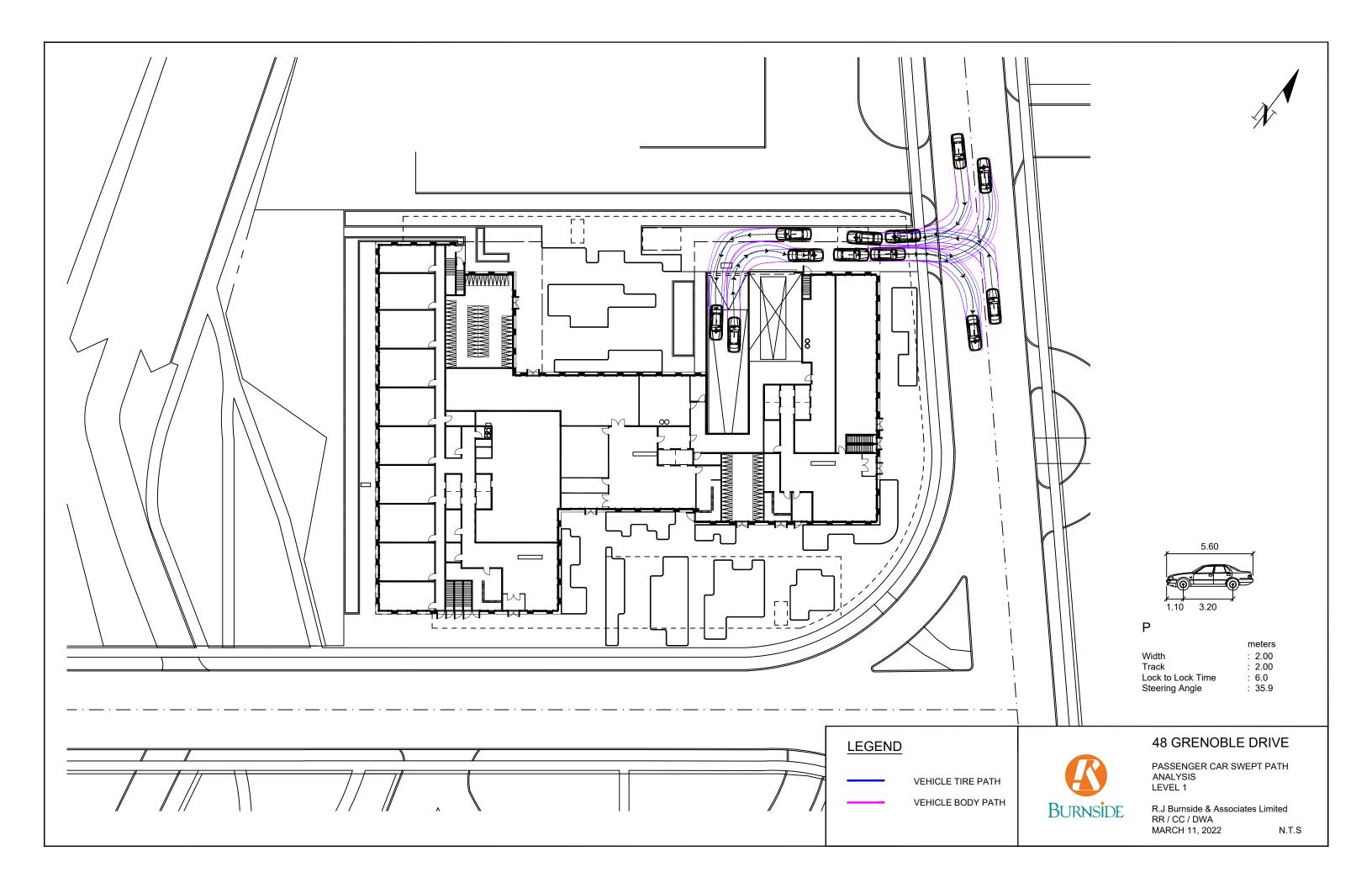
Splits and Phases: 4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

HCM Signalized Intersection Capacity Analysis
4: Commercial Driveway/Grenoble Drive & Gateway Boulevard

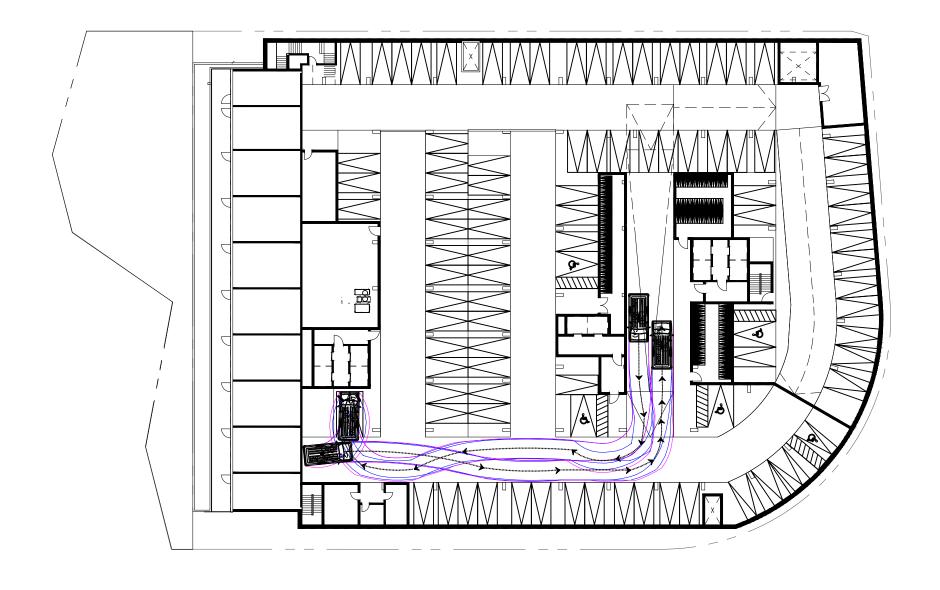
4. Commercial Drive		ICHOD	C DIIV	c u O	ileway	Douic	varu					
	•	-	\rightarrow	•	←	4	$ \blacksquare $	†	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.			4			4			4	
Traffic Volume (vph)	180	61	52	15	59	128	70	81	9	22	80	188
Future Volume (vph)	180	61	52	15	59	128	70	81	9	22	80	188
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frpb, ped/bikes	1.00	0.97			0.97			0.99			0.87	
Flpb, ped/bikes	0.98	1.00			1.00			0.95			0.99	
Frt	1.00	0.93			0.91			0.99			0.91	
Flt Protected	0.95	1.00			1.00			0.98			1.00	
Satd. Flow (prot)	1766	1712			1646			1760			1481	
Flt Permitted	0.62	1.00			0.97			0.77			0.97	
Satd. Flow (perm)	1150	1712			1609			1386			1445	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	200	68	58	17	66	142	78	90	10	24	89	209
RTOR Reduction (vph)	0	39	0	0	88	0	0	3	0	0	95	0
Lane Group Flow (vph)	200	87	0	0	137	0	0	175	0	0	227	0
Confl. Peds. (#/hr)	22		34	34		22	157		121	121		157
Heavy Vehicles (%)	1%	2%	0%	0%	2%	3%	0%	0%	0%	0%	0%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			4			8	
Permitted Phases	2			6			4			8		
Actuated Green, G (s)	23.4	23.4			23.4			29.3			29.3	
Effective Green, g (s)	23.4	23.4			23.4			29.3			29.3	
Actuated g/C Ratio	0.33	0.33			0.33			0.42			0.42	
Clearance Time (s)	6.6	6.6			6.6			5.7			5.7	
Lane Grp Cap (vph)	384	572			537			580			604	
v/s Ratio Prot		0.05										
v/s Ratio Perm	c0.17				0.09			0.13			c0.16	
v/c Ratio	0.52	0.15			0.26			0.30			0.38	
Uniform Delay, d1	18.8	16.3			17.0			13.5			14.0	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	5.0	0.6			1.1			1.3			1.8	
Delay (s)	23.8	16.9			18.1			14.9			15.8	
Level of Service	С	В			В			В			В	
Approach Delay (s)		21.1			18.1			14.9			15.8	
Approach LOS		С			В			В			В	
Intersection Summary												
HCM 2000 Control Delay			17.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.42									
Actuated Cycle Length (s)			70.0		um of lost				14.3			
Intersection Capacity Utilizat	ion		83.7%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

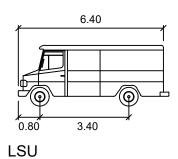

54545 Tot Analysis.syn R.J. Burnside & Associates


Synchro 11 Report 03/07/2022 - Page 7



Appendix H


Swept Path Analysis

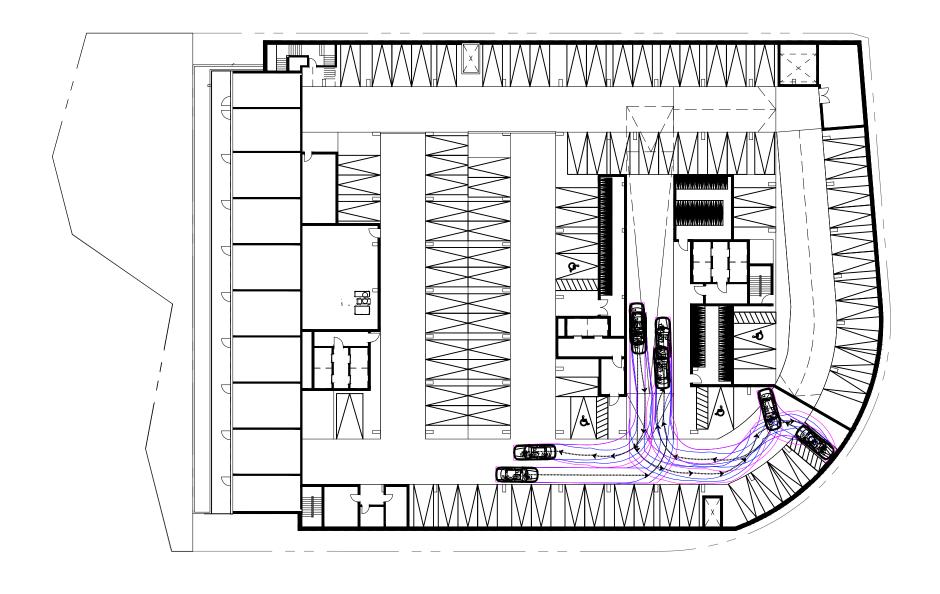


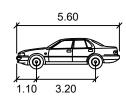
	meters
Width	: 2.60
Track	: 2.60
Lock to Lock Time	: 6.0
Steering Angle	· 40.3

LEGEND

VEHICLE TIRE PATH

VEHICLE BODY PATH


48 GRENOBLE DRIVE


BURNSIDE

LSU TRUCK SWEPT PATH ANALYSIS LEVEL P1

R.J Burnside & Associates Limited RR / CC / DWA MARCH 11, 2022 N.T N.T.S

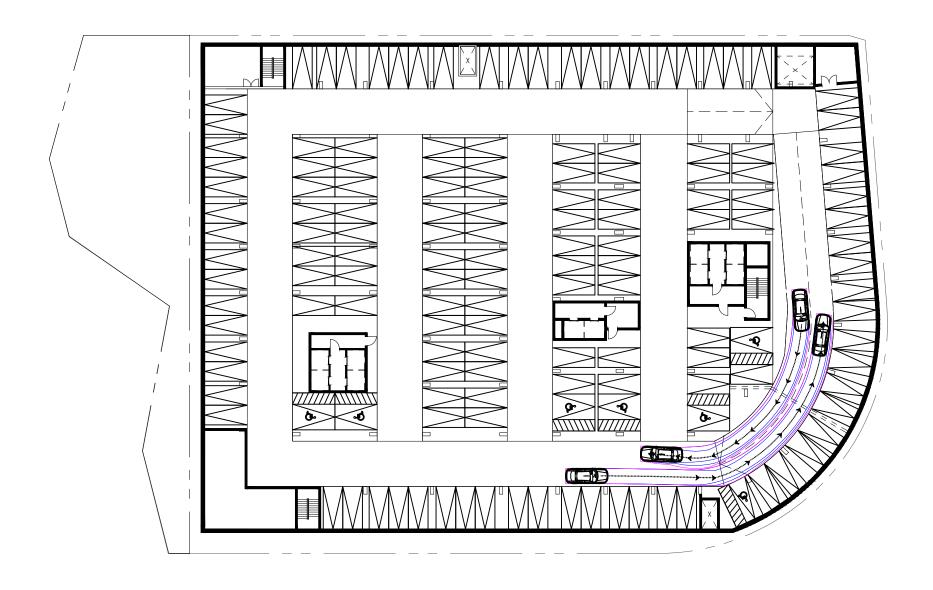
Ρ

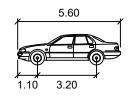
	meters
Width	: 2.00
Track	: 2.00
Lock to Lock Time	: 6.0
Steering Angle	: 35.9

LEGEND

VEHICLE TIRE PATH

VEHICLE BODY PATH


BURNSIDE


48 GRENOBLE DRIVE

PASSENGER CAR SWEPT PATH ANALYSIS LEVEL P1

R.J Burnside & Associates Limited RR / CC / DWA MARCH 11, 2022 N.T.S

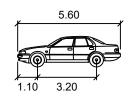
Ρ

	meters
Width	: 2.00
Track	: 2.00
Lock to Lock Time	: 6.0
Steering Angle	: 35.9

LEGEND

VEHICLE TIRE PATH

VEHICLE BODY PATH


48 GRENOBLE DRIVE

PASSENGER CAR SWEPT PATH ANALYSIS LEVEL P2/P3

R.J Burnside & Associates Limited RR / CC / DWA MARCH 11, 2022 N.T.S

Ρ

meters
Width : 2.00
Track : 2.00
Lock to Lock Time : 6.0
Steering Angle : 35.9

LEGEND

VEHICLE TIRE PATH

VEHICLE BODY PATH

BURNSIDE

48 GRENOBLE DRIVE

PASSENGER CAR SWEPT PATH ANALYSIS LEVEL P4

R.J Burnside & Associates Limited RR / CC / DWA MARCH 11, 2022 N.T.S

Appendix I

Draft Bicycle Zoning By -law Amendment

- (E) shower and change facilities and **bicycle maintenance facilities** required by this By-law for required **bicycle parking spaces**;
- **15.** Zoning By-law 569-2013, as amended, is further amended by adding the words "bicycle maintenance facilities" to Regulation 80.5.40.40(1)(D), so that it reads:
 - (D) shower and change facilities and **bicycle maintenance facilities** required by this By-law for required **bicycle parking spaces**;
- **16.** Zoning By-law 569-2013, as amended, is further amended by adding to Clause 230.5.1.10 a new regulation (12), so that it reads:
 - (12) Bicycle Maintenance Facilities

If a **building** has uses for which 5 or more "long-term" **bicycle parking spaces** are required, **bicycle maintenance facilities** must be provided in the **building** with the following minimum dimensions:

- (A) minimum length of 1.8 metres;
- (B) minimum width of 2.6 metres; and
- (C) minimum vertical clearance from the ground of of 1.9 metres.
- 230.5.10.1(5)(A) so that it reads:
 - (A) in Bicycle Zone 1, a minimum of 1.1 bicycle parking spaces for each dwelling unit, allocated as 0.9 "long-term" bicycle parking space per dwelling unit and 0.2 "short-term" bicycle parking space per dwelling unit; and
- **18.** Zoning By-law 569-2013, as amended, is further amended by adding the words "bicycle maintenance facilities" to Regulation 230.5.10.1(6)(D), so that it reads:
 - (D) shower and change facilities and **bicycle maintenance facilities** required by this By-law for required **bicycle parking spaces**;
- 230.5.10.11(4) a new subsection (C), so that it reads:
 - (C) the **bicycle maintenance facility** requirements or be authorized by a Section 45 Planning Act minor variance.
- **20.** Zoning By-law 569-2013, as amended, is further amended by adding to Clause 230.5.10.11 a new regulation (7), so that it reads:
 - (7) Lawfully Existing Building Bicycle Maintenance Facility Exemption

Regulation 230.5.1.10(12) does not apply to a **lawfully existing building** that was not required to provide **bicycle maintenance facilities**.

Appendix J

Zoning By -law 569-2013 Excerpts

Controctorio Establishment	(A) in Policy Area 1 (PA1), Policy Area 2 (PA2), Policy Area 3 (PA3) and Policy Area 4 (PA4): (i) at a minimum rate of 0.5 for each 100 square metres of gross floor area; and (ii) at a maximum rate of 1.3 for each 100 square metres of gross floor area; and (B) in all other areas of the City at a minimum rate of 3.0 for each 100 square metres of gross floor area. Parking spaces must be provided at a minimum rate of	100%	100%	1009/
Contractor's Establishment	0.5 for each 100 square metres of gross floor area .	100%	100%	100%
Court of Law	Parking spaces must be provided: (A) in Policy Area 1 (PA1), Policy Area 2 (PA2), Policy Area 3 (PA3) and Policy Area 4 (PA4) at a minimum rate of 0.5 for each 100 square metres of gross floor area; and (B) in all other areas of the City at a minimum rate of 1.0 for each 100 square metres of gross floor area.	100%	100%	0%
Crisis Care Shelter	Parking spaces must be provided: (A) at a minimum rate of 0.22 for each 100 square metres of gross floor area; and (B) at a maximum rate of 1.5 for each 100 square metres of gross floor area.	100%	100%	100%
Day Nursery	Parking spaces must be provided: (A) in Policy Area 1 (PA1), Policy Area 2 (PA2), Policy Area 3 (PA3) and Policy Area 4 (PA4): (i) at a minimum rate of 0.4 for each 100 square metres of gross floor area; and (ii) at a maximum rate of 0.8 for each 100 square metres of gross floor area; and (B) in all other areas of the City at a minimum rate of 1.0 for each 100 square metres of gross floor area.	100%	100%	50%
Dwelling Unit in a Detached House, Semi-detached House, Townhouse, Duplex, Triplex or Fourplex	Parking spaces must be provided at a minimum rate of 1.0 for each dwelling unit.	100%	100%	100%
Dwelling unit in a Multiple Dwelling Unit Buildings - Resident Parking Space	Parking spaces must be provided at a minimum rate of 1.0 for each dwelling unit.	100%	100%	100%
Dwelling unit in a Multiple Dwelling Unit Buildings – Visitor Parking Space	Parking spaces must be provided at a minimum rate of 0.2 for each dwelling unit. [1676-2013]	100%	100%	100%
Dwelling unit in an Apartment Building (Resident requirement)	For a dwelling unit in an apartment building, parking spaces must be provided: (A) in Policy Area 1 (PA1): (i) at a minimum rate of: (a) 0.3 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; (b) 0.5 for each one bedroom dwelling unit; (c) 0.8 for each two bedroom dwelling unit; and (d) 1.0 for each three or more bedroom dwelling unit; and (ii) at a maximum rate of:	100%	100%	100%

Dwelling unit in an Apartment Building – (Visitor requirement)	For a dwelling unit in an Apartment Building, parking spaces for visitors must be provided: (A) in Policy Area 1 (PA1) at a minimum rate of 0.1 for each dwelling unit; (B) in Policy Area 2 (PA2) at a minimum rate of 0.1 for each dwelling unit;	10%	35%	100%
	(D) in all other areas of the City: (i) at a minimum rate of: (a) 0.8 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; (b) 0.9 for each one bedroom dwelling unit ; (c) 1.0 for each two bedroom dwelling unit ; and (d) 1.2 for each three or more bedroom dwelling unit .			
	(c) 1.2 for each two bedroom dwelling unit; and (d) 1.5 for each three or more bedroom dwelling unit; and (B) in Policy Area 2 (PA2) and Policy Area 3 (PA3): (i) at a minimum rate of: (a) 0.6 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit; greater than 45 square metres; (b) 0.7 for each one bedroom dwelling unit; and (d) 1.0 for each three or more bedroom dwelling unit; and (ii) at a maximum rate of: (a) 0.9 for each bachelor dwelling unit up to 45 square metres and 1.3 for each bachelor dwelling unit; greater than 45 square metres; (b) 1.0 for each one bedroom dwelling unit; (c) 1.3 for each two bedroom dwelling unit; and (d) 1.5 for each three or more bedroom dwelling unit; and (C) in Policy Area 4 (PA4): (i) at a minimum rate of: (a) 0.7 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit; greater than 45 square metres; (b) 0.8 for each one bedroom dwelling unit; and (d) 1.1 for each two bedroom dwelling unit; and (d) 1.1 for each three or more bedroom dwelling unit; and (ii) at a maximum rate of: (a) 1.0 for each bachelor dwelling unit up to 45 square metres and 1.3 for each bachelor dwelling unit; and (ii) at a maximum rate of: (a) 1.0 for each bachelor dwelling unit up to 45 square metres and 1.3 for each bachelor dwelling unit; and (ii) at a maximum rate of: (a) 1.0 for each bachelor dwelling unit; and (ii) at a maximum rate of: (a) 1.0 for each bachelor dwelling unit; and (d) 1.1 for each three or more bedroom dwelling unit; and (ii) at a maximum rate of: (a) 1.0 for each bachelor dwelling unit; and (d) 1.1 for each three or more bedroom dwelling unit; and (d) 1.2 for each one bedroom dwelling unit; and (d) 1.6 for each three or more bedroom dwelling unit; and			
	(d) 1.5 for each three or more bedroom dwelling			

	(C) in Policy Area 3 (PA3) at a minimum rate of 0.1 for each dwelling unit ; (D) in Policy Area 4 (PA4) at a minimum rate of 0.15 for each dwelling unit ; and (E) in all other areas of the City at a minimum rate of 0.2 for each dwelling unit .			
Dwelling unit in a Mixed Use Building	Parking spaces are to be provided at the same rate as a Dwelling unit in an Apartment Building. [1675-2013]	100%	100%	100%
Dwelling unit in a Mixed Use Building Visitor Parking	For a dwelling unit in an Mixed Use Building, parking spaces for visitors must be provided: (A) in Policy Area 1 (PA1) at a minimum rate of 0.1 for each dwelling unit; (B) in Policy Area 2 (PA2) at a minimum rate of 0.1 for each dwelling unit; (C) in Policy Area 3 (PA3) at a minimum rate of 0.1 for each dwelling unit; (D) in Policy Area 4 (PA4) at a minimum rate of 0.15 for each dwelling unit; and (E) in all other areas of the City at a minimum rate of 0.2 for each dwelling unit. [1676-2013]	10%	35%	100%
Eating Establishment	Parking spaces must be provided: (A) in Policy Area 1 (PA1): (i) at a minimum of 0; and (ii) at a maximum rate of 3.5 for each 100 square metres of gross floor area; and (B) in Policy Area 2 (PA2): (i) at a minimum of 0; and (ii) at a maximum rate of 4.0 for each 100 square metres of gross floor area; and (C) in Policy Areas and 3 (PA3) and 4 (PA4): (i) at a minimum of 0; and (ii) at a maximum rate of 5.0 for each 100 square metres of gross floor area; and (D) in all other areas of the City: (i) where the gross floor area used for eating establishments in a building is less than 200 square metres no parking space is required; (ii) where the gross floor area used for eating establishments in a building is 200 square metres or more but less than 500 square metres, parking spaces must be provided at a minimum rate of 3.0 for each 100 square metres of gross floor area; and (iii) where the gross floor area used for eating establishments in a building is 500 square metres or more, parking spaces must be provided at a minimum rate of 5.0 for each 100 square metres or more, parking spaces must be provided at a minimum rate of 5.0 for each 100 square metres of gross floor area used for eating establishments in a building is 500 square metres or more, parking spaces must be provided at a minimum rate of 5.0 for each 100 square metres of gross floor area.		100%	
Education Use	Parking spaces must be provided: (A) in Policy Area 1 (PA1) and Policy Area 2 (PA2), at a minimum rate of 0.5 for each 100 square metres of gross floor area; (B) in Policy Area 3 (PA3) at a minimum rate of 1.5 for each 100 square metres of gross floor area;	100%	100%	50%

- (iii) minimum vertical clearance of 4.0 metres; and
- (C) a Type "C" loading space must have a:
 - (i) minimum length of 6.0 metres;
 - (ii) minimum width of 3.5 metres; and
 - (iii) minimum vertical clearance of 3.0 metres; and
- (D) a Type "G" loading space must have a:
 - (i) minimum length of 13.0 metres;
 - (ii) minimum width of 4.0 metres; and
 - (iii) minimum vertical clearance of 6.1 metres.

220.5.10 Loading Space Rates

220.5.10.1 General

(1) Loading Space Requirements

Loading spaces must be provided in compliance with regulations 220.5.10.1(2) to (9).

(2) Loading Space Requirements - Building Containing Dwelling Units

A building with dwelling units must provide loading spaces as follows:

Number of Units Minimum Number of Loading Spaces Required

0 to 30 **dwelling units** None required 31 to 399 **dwelling units** 1 Type "G"

400 **dwelling units** or more 1 Type "G" and 1 - Type "C"

(3) Loading Space Requirements - Retail Store, Eating Establishment, or Personal Service Shop

A building with a retail store, eating establishment, or personal service shop must provide loading spaces as follows:

Gross Floor Area Minimum Number of Loading Spaces Required

0 to 499 square metres None required 500 to 1,999 square metres 1 Type "B" 2,000 to 4,999 square metres 2 Type "B" 5,000 to 9,999 square metres 3 Type "B"

10,000 to 19,999 square metres 1 Type "A" and 3 Type "B"

20,000 to 29,999 square metres 1 Type "A", 3 Type "B" and 1 Type "C" 30,000 square metres or greater 1 Type "A", 3 Type "B" and 1 Type "C"

(4) Loading Space Requirements - Grocery stores/supermarket

A **building** with a grocery stores or supermarket must provide **loading spaces** as follows:

Gross Floor Area Minimum Number of Loading Spaces Required

0 to 499 square metres

None required
500 to 999 square metres

1 Type "B"

1,000 to 1,999 square metres

1 Type "A"

- (C) 2 for 61 to 120 required "long-term" bicycle parking spaces;
- (D) 3 for 121 to 180 required "long-term" bicycle parking spaces; and
- (E) 4 for more than 180 required "long-term" bicycle parking spaces.
- (8) Bicycle Parking Space Located with Use

A bicycle parking space must be on the same lot as the use for which it is required.

(9) Long Term Bicycle Parking Space Location

If a lot is located in:

- (A) the Commercial Zone category, Commercial Residential Zone category, Commercial Residential Employment Zone category, Institutional Zone category or Employment Zone category then a required "long-term" **bicycle parking space** for uses other than **dwelling units** may be located:
 - (i) on the first **storey** of the **building**;
 - (ii) on the second storey of the building;
 - (iii) on levels of the **building** below-ground commencing with the first level below-ground and moving down, in one level increments when at least 50% of the area of that level is occupied by **bicycle parking spaces**, until all required **bicycle parking spaces** have been provided; and
- (B) the Residential zone category, Apartment Zone Category; Commercial Residential Zone category, Commercial Residential Employment Zone category, then a required "long-term" bicycle parking space for a dwelling unit in an apartment building or mixed-use building may be located:
 - (i) on the first storey of the building;
 - (ii) on the second storey of the building;
 - (iii) on levels of the **building** below-ground commencing with the first level below-ground and moving down, in one level increments when at least 50% of the area of that level is occupied by **bicycle parking spaces**, until all required **bicycle parking spaces** have been provided; and
- (10) Stacked Bicycle Parking Spaces

A "long-term" bicycle parking space may be located in a stacked bicycle parking space.

(11) Bicycle Zones

Bicycle Zones in the City are:

- (A) Bicycle Zone 1, is the area of the City bounded by the Humber River on the west, Lawrence Ave. on the north, Victoria Park Ave. on the east and Lake Ontario on the south; and
- (B) Bicycle Zone 2, includes all areas of the City not included in Bicycle Zone 1.

230.5.10 Bicycle Parking Rates All Zones

230.5.10.1 General

(1) Bicycle Parking Space Rates

For a **building** or portion of a **building** constructed pursuant to a building permit issued more than three years after May 9, 2013, **bicycle parking spaces** must comply with Table 230.5.10.1(1).

	(B) in Bicycle Zone 2 is 3 plus 0.06 bicycle parking spaces for each 100 square metres of interior floor area used for a public school or private school.	used for a public school or private school .
Public School	the minimum number of short-term bicycle parking spaces to be provided: (A) in Bicycle Zone 1 is 3 plus 0.1 bicycle parking spaces for each 100 square metres of interior floor area used for a public school or private school; and (B) in Bicycle Zone 2 is 3 plus 0.06 bicycle parking spaces for each 100 square metres of interior floor area used for a public school or private school.	the minimum number of long-term bicycle parking spaces to be provided: (A) in Bicycle Zone 1 is 0.1 for each 100 square metres of interior floor area used for a public school or private school; and (B) in Bicycle Zone 2 is 0.06 for each 100 square metres of interior floor area used for a public school or private school.
Retail Store	the minimum number of short-term bicycle parking spaces to be provided: (A) in Bicycle Zone 1 is 3 plus 0.3 bicycle parking spaces for each 100 square metres of interior floor area used for a retail store; and (B) in Bicycle Zone 2 is 3 plus 0.25 bicycle parking spaces for each 100 square metres of interior floor area used for a retail store.	the minimum number of long-term bicycle parking spaces to be provided: (A) in Bicycle Zone 1 is 0.2 for each 100 square metres of interior floor area used for a retail store; and (B) in Bicycle Zone 2 is 0.13 for each 100 square metres of interior floor area used for a retail store.

(3) Use With Interior Floor Area of 2000 Square Metres or Less

Despite the **bicycle parking space** rates set out in regulations 230.5.10.1(1) and 230.5.10.1(5) and (6), if a **bicycle parking space** is required for uses on a **lot**, other than a **dwelling unit**, and the total **interior floor area** of all such uses on the **lot** is 2000 square metres or less, then no **bicycle parking space** is required.

(4) Multiple uses on a lot

If Table 230.5 10.1(1) Bicycle Parking Space Rates, requires a **bicycle parking space** for one or more uses on a **lot**, the total number of **bicycle parking spaces** required is equal to the cumulative total of all **bicycle parking spaces** required for each use on the **lot**.

(5) Bicycle Parking Space Requirements for Dwelling Units

Bicycle parking space requirements for dwelling units in an apartment building or a mixed use building are:

- (A) in Bicycle Zone 1, a minimum of 1.0 bicycle parking spaces for each dwelling unit, allocated as 0.9 "long-term" bicycle parking space per dwelling unit and 0.1 "short-term" bicycle parking space per dwelling unit; and
- (B) in Bicycle Zone 2, a minimum of 0.75 bicycle parking spaces for each dwelling unit, allocated as 0.68 "long-term" bicycle parking space per dwelling unit and 0.07 "short-term" bicycle parking space per dwelling unit.

(6) Interior Floor Area Exclusions for Bicycle Parking Space Calculations

To calculate **bicycle parking space** requirements for other than **dwelling units**, the **interior floor area** of a **building** is reduced by the area in the **building** used for:

- (A) parking, loading and bicycle parking below-ground;
- (B) required loading spaces at the ground level and required bicycle parking spaces at or aboveground;

Appendix K

Zoning By -law 89-2022 Excerpts

Table 200.5.10.1

PARKING SPACE RATES

Land Use Category	Parking Rate	
Resident Requirement for a Dwelling unit in an: Apartment Building,	Parking spaces must be provided:	
Assisted Housing or a Mixed Use Building	(A) in Parking Zone A (PZA) at a maximum rate of: (i) 0.3 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; and (ii) 0.5 for each one bedroom dwelling unit ; and (iii) 0.8 for each two bedroom dwelling unit ; and (iv) 1.0 for each three or more bedroom dwelling unit ; and	
	(B) in Parking Zone B (PZB) at a maximum rate of: (i) 0.7 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; and (ii) 0.8 for each one bedroom dwelling unit ; and (iii) 0.9 for each two bedroom dwelling unit ; and (iv) 1.1 for each three or more bedroom dwelling unit ; and	
	(C) in all other areas of the City, at a maximum rate of: (i) 0.8 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; and (ii) 0.9 for each one bedroom dwelling unit ; and (iii) 1.0 for each two bedroom dwelling unit ; and (iv) 1.2 for each three or more bedroom dwelling unit .	
Resident Requirement for a Dwelling Unit in a: Detached House , Semidetached House , Townhouse , Duplex , Triplex or Fourplex	None	
Resident Requirement for a Dwelling Unit in a Multiple Dwelling Unit Buildings	Parking spaces must be provided at a maximum rate of 1.0 for each dwelling unit.	
Secondary Suite	None	

Land Use Category	Parking Rate	
Visitor Requirement:	Parking spaces must be provided:	
For a dwelling unit in an Apartment Building , a Mixed Use Building , and/or a Multiple Dwelling Unit Building	(A) in Parking Zone A (PZA) at a minimum rate of 2.0 plus 0.01 per dwelling unit; (B) in Parking Zone B (PZB) and in all other areas of the City, at a minimum rate of 2.0 plus 0.05 per dwelling unit and (C) at a maximum rate of 1.0 per dwelling unit for the first five (5) dwelling units; and (D) at a maximum rate of 0.1 per dwelling unit for the sixth and subsequent dwelling units.	
Tier 1:	Parking spaces must be provided at a maximum rate of 0.5 for each bed-sitting room or dwelling unit .	
Alternative Housing, Group Home, Hospice Care Home, Nursing Home, Religious Residence, Retirement Home, Respite Care Facility and Seniors Community House		
Tier 2:	Parking spaces must be provided:	
Adult Education School, Animal Shelter, Art Gallery, Clinic (medical), Community Centre, Court of Law, Day Nursery, Education Use, Hospital, Hotel, Kennel, Laboratory, Motel, Museum, Office (Excluding Medical Office), Performing Arts Studio, Post-Secondary School, Private School, Production Studio, Public School, Recreation Use, Religious Educational Use, Self-Storage Warehouse, Software Development and Processing, Vehicle Dealership, Veterinary Hospital	(A) in Parking Zone A (PZA) at a maximum rate of 0.8 for each 100 square metres of gross floor area; (B) in Parking Zone B (PZB) at a maximum rate of 1.0 for each 100 square metres of gross floor area; and (C) in all other areas of the City, at a maximum rate of 3.5 for each 100 square metres of gross floor area.	
Tier 3: Crisis Care Shelter, Municipal Shelter, Residential Care Home	Parking spaces must be provided at a maximum rate of 1.5 for each 100 square metres of gross floor area.	

Table 200.15.10.5

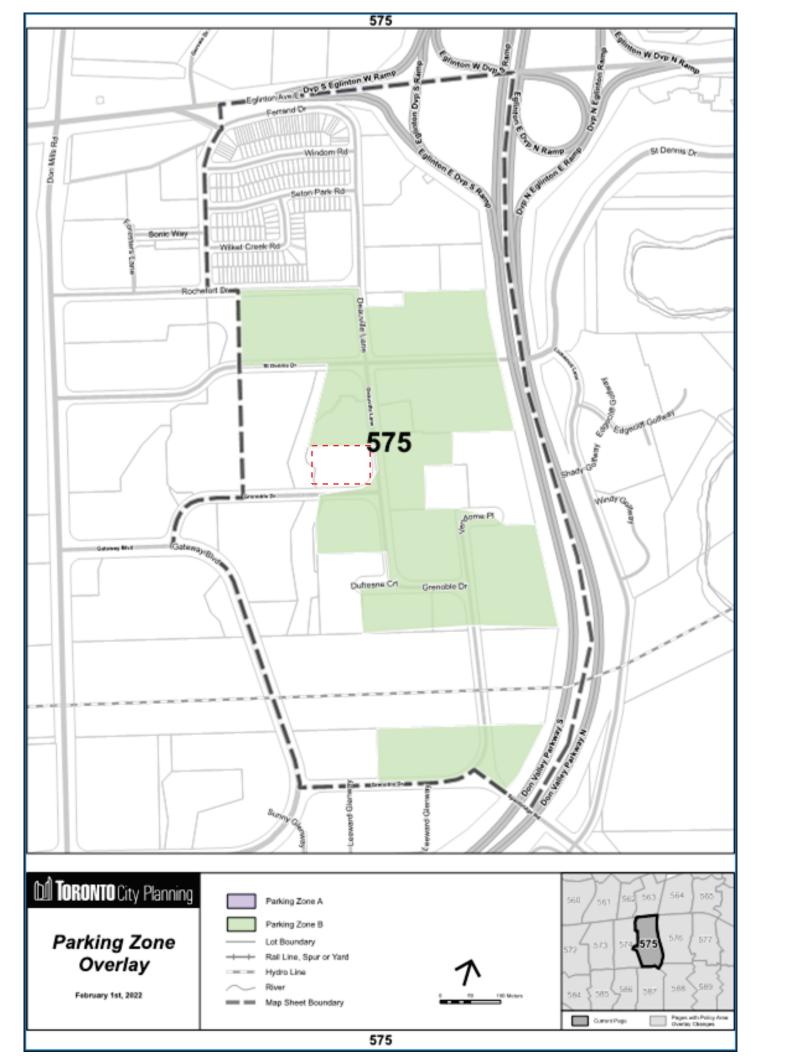
Parking Space Rates for Effective Parking Spaces

Land Use Category	Rate for Calculating Effective Parking Spaces
Resident Requirement for a Dwelling unit in an: Apartment Building , Assisted Housing or a Mixed Use Building	The rate for calculating effective parking spaces is:
	(A) in Parking Zone A (PZA) at a rate of: (i) 0.3 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; and (ii) 0.5 for each one bedroom dwelling unit; and (iii) 0.8 for each two bedroom dwelling unit; and (iv) 1.0 for each three or more bedroom dwelling unit; and (B) in Parking Zone B (PZB) at a rate of: (i) 0.7 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; and (ii) 0.8 for each one bedroom dwelling unit; and (iii) 0.9 for each two bedroom dwelling unit; and (iv) 1.1 for each three or more bedroom dwelling unit; and
	(C) in all other areas of the City, at a rate of: (i) 0.8 for each bachelor dwelling unit up to 45 square metres and 1.0 for each bachelor dwelling unit greater than 45 square metres; and (ii) 0.9 for each one bedroom dwelling unit; and
	(iii) 1.0 for each two bedroom dwelling unit ; and (iv) 1.2 for each three or more bedroom dwelling unit .

Land Use Category	Rate for Calculating Effective
	Parking Spaces
Resident Requirement for a Dwelling Unit in a:	None
Detached House, Semi-detached House, Townhouse,	
Duplex, Triplex or Fourplex	
Resident Requirement for a Dwelling Unit in a Multiple	The rate for calculating effective
Dwelling Unit Buildings	parking spaces is
	1.0 for each dwelling unit.
Secondary Suite	None
Visitor Requirement for a dwelling unit in an	The rate for calculating effective
Apartment Building, a Mixed Use Building, and/or a	parking spaces is 0.1 per dwelling
Multiple Dwelling Unit Building	unit.
Tier 1:	The rate for calculating effective
	parking spaces is 0.2 parking
Alternative Housing, Group Home, Hospice Care	spaces for each bed-sitting room
Home, Nursing Home, Religious Residence,	or dwelling unit
Retirement Home, Respite Care Facility and Seniors	
Community House	
Tier 2:	The rate for calculating effective
	parking spaces is:
Adult Education School, Animal Shelter, Art Gallery,	
Clinic (medical), Community Centre , Court of Law,	(A) in Parking Zone A (PZA) and
Day Nursery, Education Use, Hospital, Hotel, Kennel,	Parking Zone B (PZB),
Laboratory, Motel, Museum, Office (Excluding	0.4 parking spaces for each
Medical Office), Performing Arts Studio, Post-	100 square metres of gross floor
Secondary School, Private School, Production	area; and
Studio, Public School, Recreation Use, Religious	(B) in all other areas of the City,
Educational Use, Self-Storage Warehouse, Software	1.0 parking spaces for each
Development and Processing, Vehicle Dealership,	100 square metres of gross floor
Veterinary Hospital	area.
Tier 3:	The rate for calculating effective
	parking spaces is 0.2 parking
Crisis Care Shelter, Municipal Shelter, Residential	spaces for each 100 square metres
Care Home	of gross floor area

Land Use Category	Rate for Calculating Effective
	Parking Spaces
Tier 4:	The rate for calculating effective
	parking spaces is:
Adult Entertainment, Ambulance Depot, Amusement	
Arcade, Artist Studio, Billiard Hall, Bowling Alley,	(A) in Parking Zone A (PZA) and
Bus Station, Cabaret, Cemetery, Club, Contractor's	Parking Zone B (PZB),
Establishment, Eating Establishment, Entertainment	1.0 parking spaces for each
Place of Assembly, Financial Institution, Fire Hall,	100 square metres of gross floor
Funeral Home, Gaming Establishment, Golf Course,	area; and
Grocery Store, Industrial Sales and Service, Industrial	(B) in all other areas of the City,
Skills Training, Library, Manufacturing Uses, Medical	2.0 parking spaces for each
Office, Nightclub, Park, Personal Service Shop, Pet	100 square metres of gross floor
Services, Place of Assembly, Place of Worship, Police	area.
Station, Pool Hall, Railway Service and Repair Yard;	
Railway Station, Retail Service, Retail Store, Service	
Shop, Vehicle Depot, Vehicle Fuel Station, Vehicle	
Repair Shop, Vehicle Service Shop, Visitation	
Centre, Warehouse, Wholesaling Use	

200.15.10.10 Parking Rate – Accessible Parking Spaces


(1) Accessible Parking Rates – General

In accordance with Table 200.15.10.5, if the number of effective **parking spaces** associated with **dwelling units** is 5 or more, or if the number of effective **parking spaces** associated with uses in Tiers 1, 2, 3, or 4, excluding medical offices and clinics, is 1 or more, clearly identified off **street** accessible **parking spaces** must be provided on the same **lot** as every **building** or **structure** erected or enlarged, as follows:

- (A) if the number of effective **parking spaces** is less than 13, a minimum of 1 accessible **parking space** must comply with all regulations for an accessible **parking space** in Section 200.15;
- (B) if the number of effective **parking spaces** is 13 to 100, a minimum of 1 accessible **parking space** for every 25 effective **parking spaces** or part thereof must comply with all regulations for an accessible **parking space** in Section 200.15; and
- (C) if the number of effective **parking spaces** is more than 100, a minimum of 5 accessible **parking spaces** plus 1 accessible **parking space** for every 50 effective **parking spaces** or part thereof in excess of 100 **parking spaces** must comply with all regulations for an accessible **parking space** in Section 200.15.

(2) Accessible Parking Rates – Medical Offices and Clinics

In accordance with Table 200.15.10.5, if the number of effective **parking spaces** associated with medical offices and clinics is 1 or more, accessible **parking spaces** which comply with all regulations for an accessible **parking space** in Section 200.15 must be provided, as follows:

